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Abstract

These are collected notes for a course taught at UC Berkeley in Spring 2024,

on the quantum theory of measurement.
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0. Preliminaries

In this course we use “natural” units ~ = c = 1. This means that all dimensionful

quantities have units of either mass to some power or length to the inverse power,

Mn = 1/Ln. In particular mass, energy, momentum, and frequency all have the same

units. The reason you should get used to these units is not because they make formulas

shorter (which is true) but because they make dimensional analysis extremely simple.

A very useful tool for unit conversions is https://gutcalc.com/, which is also available

as a phone app; it will let you input in an arbitrary mix of SI and natural units and

output in whatever units you want.

I feel obliged to mention some cultural background before moving into the techni-

cal material. My training is in formal high energy theory, not quantum measurements,

although that is now what I spend most of my time working on. These notes are my

attempt to systematize a collection of things I’ve learned piecewise over the past ten

years to solve certain problems I’m interested in. What this means for you is that
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while I promise I am attempting to present the standard story, in various places I may

say things that would be considered heterodox, or use language in a non-standard

way. Just keep an eye out and feel free to ask questions at all times.

Finally, a brief comment on a key difference between the presentation here and

the books available when I started to compile these notes. The main difficulty I had

with the available materials is that very few of them really get into the details of

physics calculations underlying the measurement process. This is a common issue

in modern quantum information texts: often students are just handed equations in

the language of oscillators and qubits, and at best some heuristic argument for the

form of the equations, usually with arbitrary coefficients. This gives the mistaken

impression that these kinds of things can’t be derived from microscopic models. I

have endeavored, especially in the early materials, to provide concrete examples that

can be analyzed start-to-finish from detailed dynamical models. The particular goal

is to let students see how the simple descriptions can be obtained systematically from

exact (or at least, more exact) starting points.

Many people are owed thanks for helpful discussions while preparing these notes

and learning the core of this material over the years, especially Jess Riedel and Jake

Taylor. I would also like to thank the students at UC Berkeley for their patience and

feedback, and particularly Jacob Beckey, who provided great advice and resources for

many parts of this material.
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Pure states General states

State |ψ〉 ∈ H ρ =
∑

i pi |i〉 〈i|

Measurement outcomes Eigenvalues a of A = A† same

Probabilities P (a) = | 〈a|ψ〉 |2 P (a) = tr |a〉 〈a| ρ

State update |ψ〉 → |a〉 ρ→ |a〉 〈a|

Table 1: The old school rules of quantum measurement.

1. Fundamentals: what is a measurement?

The majority of this course is going to be based on rather established, hard-nosed

stuff like noise budgets, measurement efficiencies, and so forth, where like most of

quantum mechanics we will largely follow a “shut up and calculate” approach. This

is justified because the calculations all correspond to reality in a clear way.

In this first section, however, we are going to take a dive into one of the thorniest

issues in modern physics: the actual definition of a measurement. The simple truth

is that as of now we do not have a rigorous definition of a measurement in quantum

mechanics ! In quantum mechanics books this is usually mentioned and then ignored.

In the handful of measurement theory books that exist to my knowledge, I was sur-

prised to find that still not much more detail is usually given. Having now tried to

produce a few lectures on this, I understand why: it’s a brutal problem to treat in

a way where you both reproduce the right heuristic rules, and also do not lie. What

follows is my attempt.

1.1. The standard lore and its limitations

Here is what you probably learned in your quantum mechanics courses. The state

of a system is a vector |ψ〉 ∈ H in a Hilbert space. “Observables” are represented

by Hermitian operators A = A† on H. The spectral theorem guarantees that these

can be diagonalized, A =
∑

a a |a〉 〈a|. When we do a measurement of A, we obtain

a one of the outcomes a, with probability distribution P (a) = | 〈a|ψ〉 |2. After the

measurement, the state collapses to the corresponding eigenvector |ψ〉 → |a〉. This is

summarized in Table 1.

You should notice that in the above, at no point did we actually specify how the

4



measurement is supposed to be enacted; this is just a list of rules about outcomes.

This is a part of the so-called measurement problem. The reality is that we have a

clear sense of certain circumstances where the above rules work and we know what

we mean, but we also have a much more general set of circumstances we would also

normally consider measurements, where these rules do not apply. We will get to these

shortly. First, let’s talk about what actually doing the measurement looks like in an

example where the above story does apply: Schrödinger’s cat.

The setup is famous: we have a box, within which there is an unstable uranium

isotope, a vial of poison which breaks open when the uranium decays, and a cat.

We are going to think of this whole setup as enacting a measurement of the state

of the uranium atom. The basic idea is that the microscopic state of the atom gets

“amplified” by coupling to the cat, which we can then measure according to the

standard story given above.

First, let’s review how the scene unfolds. Let |e〉 , |g〉 denote the excited (unsta-

ble/parent) and ground (stable/daughter) state of the uranium atom. The initial

state total state |Ψ〉 of the joint system evolves unitarily,

|Ψ(0)〉 |e〉 ⊗ |alive〉 → |ψ(t)〉 = Ae(t) |e〉 ⊗ |alive〉+ Ag(t) |g〉 ⊗ |dead〉 , (1.1)

where Ae(t) ∼ e−t/2t1/2 is the amplitude for the decay in terms of the half-life t1/2.

The cat’s Hilbert space also includes the vial and poison. Now, at this stage we take

for granted that we can “measure” the state of the cat, vial, and poison by simply

opening the box and looking at it. There seems no doubt of this in real life. Moreover

we will get one or the other outcome, dead or alive. One can write down a Hermitian

operator

A = aalive |alive〉 〈alive|+ adead |dead〉 〈dead| = aaliveΠalive + adeadΠdead (1.2)

which is just the sum of two projectors Πalive,dead with some eigenvalues aalive,dead, and

claim we are measuring this observable. The probability distribution of the outcomes

is given by the Born rule quoted above. To compute this we need

〈alive|Ψ(t)〉 = Ae(t) |e〉 , 〈dead|Ψ(t)〉 = Ag(t) |g〉 , (1.3)

from which we obtain

P (alive) = | 〈alive|Ψ(t)〉 |2 = |Ae(t)|2, P (dead) = | 〈alive|Ψ(t)〉 |2 = |Ag(t)|2. (1.4)

The most subtle aspect is the wavefunction collapse rule. The formal way of writing is

that given the outcome of the cat, we should project the whole system appropriately:
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|ψ〉 → Πoutcome |ψ〉 /
√
P (outcome), where the denominator normalizes the final state.

Here, this means that we get

|Ψ(t)〉 →

|e〉 ⊗ |alive〉 given outcome “alive′′

|g〉 ⊗ |dead〉 given outcome “dead′′
. (1.5)

It should be emphasized that the use of kets |e, g〉 and |alive, dead〉 is a massive

oversimplification of reality. There is not a single decay state but rather a whole

spectrum of them—the various radiation products can be ejected with various en-

ergies and directions, for example—and similarly there are two huge subspaces of

the cat+vial+poison Hilbert space corresponding to the two outcomes. This is more

or less accurately captured in the general description using projectors like Πalive,dead,

where these now project not onto a certain specific vector but the high-dimensional

alive/dead subspaces. We will return to this point later.

So in what sense did we measure the quantum state of the atom itself? From Eq.

(1.5), we know that with P (e) = |Ae|2 we found the atom in the unstable excited state

and the cat alive, and similarly for ground state and dead cat. The cat serves as a

measurement “record”: classical information, stable under reasonable perturbations

to the environment, which tells us the outcome. What about the atom state by itself?

To calculate the state of just the atom, we use the usual partial trace rules

ρatom = trcat |Ψ〉 〈Ψ| =

|e〉 〈e| given outcome “alive′′

|g〉 〈g| given outcome “dead′′
. (1.6)

In other words, the atom state is similarly projected onto either |e〉 or |g〉. So,

this whole process acts to make a projective measurement on the atom, obeying the

textbook rules above: we have an operator Aatom = ae |e〉 〈e| + ag |g〉 〈g|, and then

when we measure Aatom we get the outcomes e, g with the probabilities P (e), P (g).

This is the way that measurement of a quantum system is often presented: the

measurement apparatus (the cat) is not mentioned explicitly and we just work with

operators on the system of interest (the atom). It is taken for granted that some

measurement system like the cat can be found. Much of this course will be dedicated

to understanding how these cats actually work.

As an aside, notice that the nominal eigenvalues aalive,dead or ae,g never affect

anything. This reflects a basic fact about measurement that is usually glossed over:

the choice of a measurement is not so much about choosing some Hermitian operator

A, but rather about choosing a basis. This may sound esoteric, but for example,
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M

Figure 1: Abstract definition of a measurement on a system S. First, S is coupled

to a larger measurement system M , and in particular there is some amplification of

the S information. Then, a von Neumann (repeatable, projective) measurement is

made on M , which then enacts a generalized measurement on S following the rules

in Table 2.

notice that a measurement of either the position x or its cube x3 obviously can’t give

any different information about where a particle is. The real point is just that you

measure in the position basis.

The above example highlights the central elements of what is, at present, the

closest we have to a definition of a measurement in quantum mechanics. We have a

system S (e.g., the uranium atom), whose state we want to measure, and a measure-

ment apparatus M (e.g., the poison and cat). Now we make a circular definition: to

do a measurement on S, we first entangle S with M via some kind of dynamics, and

then we measure M . This “measurement” on M is never really precisely defined; we

just assume that M is large, and the entangling dynamics can “amplify” the infor-

mation about S into a stable set of states of M , that we can fall back on a heuristic

definition of measurement on M . Then, we can use the rules of partial traces to figure

out what happened to the original system S. See Fig. 2.

The amplification step is critically important. As a toy model to illustrate what it

means, consider a qubit S = span{|0〉 , |1〉} and some large number n� 1 of readout

qubits M = span{|000 · · ·〉 , |100 · · ·〉 , . . .}, with 2n total states. The amplification

step could look something like a dynamical, unitary evolution U that takes

|Ψ〉 = (a |0〉+ b |1〉)⊗ |000 · · ·〉 → U |Ψ〉 = a |0〉 ⊗ |000 · · ·〉+ b |1〉 ⊗ |111 · · ·〉 . (1.7)

The idea is that we can safely assume that we can measure this large qubit system.

For example if these are electron spins, the M states on the right-hand side will have

a large magnetic moment and could be measured with a simple magnetometer. If we

measure in the total-M -spin-z basis, the same logic used in the cat example shows

that this will produce a projective spin-z measurement on the S qubit.
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This amplifier is just a CNOT gate, where the qubit S is the control and the states

|0̃〉 = |000 · · ·〉 and |1̃〉 = |111 · · ·〉 of the amplifier form a “logical subspace”, in the

language of error correction. Then the amplifier modeled here acts as as,

U =


1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

 (1.8)

where the matrix elements are in the |0〉 |0̃〉 , |0〉 |1̃〉 , |1〉 |0̃〉 , |1〉 |1̃〉 basis; this is the

usual CNOT gate in quantum computing. In this example, the amplification is

“noiseless”: the two S basis states are mapped perfectly onto an orthogonal pair

of pure M states. In a real amplifier, the final M states will be more complicated, for

example superpositions of many different bit strings, or perhaps the final states will

not even be pure. In this case what a measurement should do is actually pick out

some pair of subspaces of the M Hilbert space, where all the states in the subspaces

still accurately correspond to the right system states. This is a simple form of error

correction. We will discuss this kind of readout noise in great detail throughout this

course.

Before moving on to the general formalism sketched above, let’s motivate it with

another example, one in which the measurement on the microscopic system does

not obey the standard framework of Table 1: photodetection. Suppose we have a

semiconductor or some kind of system that has a photoelectric effect; we can model

this as a bunch of electrons, each of which has a Hamiltonian with a bound ground

state |g〉 with energy E = −∆, and then some band of excited (conducting/free)

states |E〉 with energies E > 0. The basic operating principle is that an incident

photon of frequency ω ≥ ∆ can be absorbed and excite one of the electrons to some

conducting state |g〉 → |E〉, which is then amplified and detected. The amplification

step can be done in various ways; for example one can imagine having a large voltage

bias, so that once the electron is excited, its energy gets amplified to some large value,

and is then smashed into a metal plate or something such that an easily measurable

shower of particles is produced. The whole chain of systems including the electrons,

bias, and final detector constitute the measurement apparatus M .

Now for the system S, suppose we prepare a mode of the electromagnetic field in

some superposition of the vacuum |0〉 and a single photon |1〉. We will discuss the
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details of this later, but for now let’s model the interaction U as

U |0〉 |g〉 = |0〉 |g〉 ,

U |1〉 |g〉 = |0〉 |e〉 .
(1.9)

Here |e〉 is some particular excited state in the {|E〉}E>0 subspace; for example, one

where the gap ωeg = ωlight is exactly on resonance with the input light. The unitary

in Eq. (1.9) is a very simplified picture, in which the photodetector is a perfect

absorber (in optics language, it has “quantum efficiency” η = 1). In homework, you

will explore what happens with a finite detection efficiency. Following the same logic

as in the uranium and cat case, we will now assume that we can projectively measure

the electron; we will leave the amplifier, final detector and so forth implicit, and just

act with projectors Πe = |e〉 〈e| and Πg = |g〉 〈g|. With an arbitrary initial state of

the electromagnetic mode, the interaction produces the final joint state

|Ψ〉 (a |0〉+ b |1〉)⊗ |g〉 → U |Ψ〉 = a |0〉 ⊗ |g〉+ b |0〉 ⊗ |e〉 . (1.10)

Measuring the electron (plus amplifier, ...) we now obtain the outcome e, i.e., the

detector “clicks” as we have absorbed a photon, with probability |a|2. We hear no

click since no photon was absorbed, with probability |b|2. This is obviously the right

answer, given the initial state.

What is the resulting final state of the photon field? Again using the partial trace

as described above, we find that the state of the photon, conditioned on the different

measurement outcomes, is

ρphoton = trelectron |Ψ〉 〈Ψ| =

|0〉 〈0| given outcome “e′′

|0〉 〈0| given outcome “g′′
. (1.11)

Oh no! In either case, the resulting photon state is just the vacuum. That this was

going to be the answer is physically obvious: either there wasn’t a photon in the first

place, or there was and then it got absorbed. But this is naively at odds with the usual

“wavefunction collapse” rule, which one might have said would project the photon

into two different states. Indeed, if we thought of this as “measuring the number

operator”, the standard update postulate would have said that if we got 1 that the

resulting photon state was |1〉. On the other hand, the measurement outcomes do

correspond to perfect (“projective”) information about the photon.

What this example illustrates is that there are operations we can do, like absorp-

tive photodetection, which any sane person would call a measurement, but which
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Pure states General states

State |ψ〉 ∈ H ρ =
∑

i pi |i〉 〈i|

Measurement outcomes Labels a of POVM Ea = K†aKa same

Probabilities P (a) = 〈ψ|Ea|ψ〉 P (a) = trEaρ

State update |ψ〉 → Ka|ψ〉√
P (a)

ρ→ KaρK
†
a

P (a)

Table 2: The modern rules of quantum measurement.

do not obey the simple rules of Table 1. In this case, the state update rule is not

correct. More generally, we can modify some of the other naive measurement rules

as well. In the next section, we turn to this generalized, modern picture of quantum

measurements.

1.2. The modern lore: POVMs, etc.

Let’s spell out the above measurement procedure in detail, which will lead us imme-

diately into some examples of measurements more general than projective ones. Fix

a system S in an arbitrary initial state ρS, and measurement apparatus M in some

“register” state |0〉. We couple them through unitary dynamics:

ρ = ρS ⊗ |0〉 〈0| → ρ′ = U (ρS ⊗ |0〉 〈0|)U † (1.12)

and then projectively measure the apparatus in some basis |a〉. We get outcome a

with probability

P (a) = tr Πaρ
′

= trS 〈a|U (ρS ⊗ |0〉 〈0|)U †|a〉

= trSKaρSK
†
a,

(1.13)

where we defined the Kraus operators

Ka := 〈a|U |0〉 . (1.14)

Notice that these are operators on the system Hilbert space HS; they are not neces-

sarily Hermitian, but satisfy a completeness relation that is important to make sense
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of the out probabilities:∑
a

K†aKa =
∑
a

〈0|U †|a〉 〈a|U |0〉 = 1S (1.15)

Following the discussion in the previous section, we emphasize again that there is

an amplification step, where the state of S is highly amplified into a much larger

measurement apparatus M . See Fig. 1.1. However, we will often just model M as a

simple quantum system and leave the amplification and large measurement apparatus

implicit. This may sound esoteric in the abstract; we will do a number of examples

shortly.

Thus, in the end, those are the rules: a measurement is defined by a set of “out-

comes” {a}, each of which comes with a Kraus operator, and the experiment produces

outcome a with probability given by Eq. (1.13). Projective measurements are a spe-

cial case, when Ka = K2
a = K†a are projection operators and Hermitian. Note the

physical meaning of the “outcome” a: it is some specific state |a〉 recorded on the

measurement apparatus, for example |alive〉 in the Schrödinger’s cat example.

Looking at the state of the joint system and measurement apparatus after the

measurement is very instructive. Assuming that we get outcome a, the usual von

Neumann rules say that we should project the M state down to |a〉, or more precisely

we should act with the projection operator 1S⊗|a〉 〈a| on the joint system. Doing so,

we find that the state is updated to

ρ′ → 1

P (a)
(1S ⊗ |a〉 〈a|) ρ′ (1S ⊗ |a〉 〈a|)†

=
1

P (a)
|a〉 〈a|U (ρS ⊗ |0〉 〈0|)U † |a〉 〈a|

=
KaρSK

†
a

P (a)
⊗ |a〉 〈a| .

(1.16)

The factor P (a) is needed to ensure the final state is normalized correctly. The

interpretation of the last line is very clear: given the outcome a, the measurement

apparatus M is projected into the appropriate “pointer” state |a〉, and the system

state is updated as

ρS →
K†aρSKa

P (a)
. (1.17)

Notice that Ka, in general, is not a projection operator, which means that the updated

system state is not necessarily a particular pure state. In other words, a general

measurement does not completely “collapse” the system state.
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As we will emphasize in the next sections with examples, the state update rule

can be quite tricky. Even in simple scenarios one has to be careful that the projective

measurement acting on the apparatus is described correctly in order to get the right

Kraus operators. We will illustrate this in the next section with a simple example,

the Stern-Gerlach experiment.

Sometimes this story is presented slightly differently. Notice that in the final

expression for the outcome probability distribution, Eq. (1.13), we could choose a

different set of Kraus operators

K ′a = UKa (1.18)

and still get the same set of probability outcomes, where U can be an arbitrary unitary

on HS. This corresponds, physically, to the fact that we can extract the same system

information using a variety of different apparatuses. A more invariant object that we

can form is

Ea := K†aKa. (1.19)

These make up what is called a Projective Operator-Valued Measure (POVM), which

is a set of positive operators Ea > 0 on HS satisfying
∑

aEa = 1S. The name is

because for any set of outcomes A = {a1, a2, . . .}, we can form a positive operator

OA =
∑

a∈AEa, and use these to define a probability distribution

P (a ∈ A) = trS OAρS. (1.20)

In other words, this produces a measure (in the sense of measure spaces) on the space

of measurement outcomes. Obviously, this distribution is invariant under (1.18). Note

that the special case of projective measurements, where the Ea are all projection op-

erators, similarly define a measure; these are sometimes referred to as Projective

Operator Measures (PVMs). Sometimes people talk about measurements being de-

fined by a choice of POVM. The issue with this that it does not uniquely specify the

update to the system state after the measurement: clearly Eq. (1.17) is not invariant

under the choice of different Kraus operators.

These generalized rules are summarized in Table 2. As we have emphasized, these

rules encapsulate just about anything one would like to think of as a measurement in

quantum mechanics. Of course, they still rely on a kind of circular definition, where

we take for granted some notion of projective measurement on the apparatus M with

the usual Born rules. Figuring out if there is a more general definition which does

not enforce this step ad hoc is the essence of the so-called “measurement problem”,
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Figure 2: Local vs non-local measurements. Left: A local measurement on HS =

HS1 ⊗HS2 ⊗ · · · . Each factor HSi is coupled to a single measurement apparatus Mi

through a unitary Ui, so that the whole system is coupled to the whole measurement

apparatus via U = U1 ⊗ U2 ⊗ · · · . Each apparatus is then measured in some basis

|ai〉Mi
. Right: An example non-local measurement on a bipartite system HS =

HS1 ⊗ HS2 . Here there is only one measurement apparatus M , and the unitary U

couples both S1,2 to M .

and thinking about it too hard leads one deep into the weeds of things like the Many-

Worlds Interpretation, QBism, and so forth. While there may be light at the end

of that very dark tunnel, in this course we will instead follow the pragmatic route,

shutting up and calculating based on these generalized measurement rules.

1.3. Local and non-local measurements

(Under construction: need to fix the definition here to allow for classical

post-processing, as in Pauli tomography. –dc)

In quantum measurements, the distinction between local and non-local measure-

ments is very important. The language is slightly different from the notion of locality

used in other contexts, so here we briefly spell out the definitions. The use of local

measurements and non-local measurements will play a crucial role in our study of

state reconstruction (“tomography”), in Ch. 4.

Locality in quantum mechanics is always a statement about Hilbert space factors;

it has no a priori connection to spacetime locality. Suppose we have a system with

Hilbert space H and we have some way to decompose it into factors

H = H1 ⊗H2 ⊗ · · · . (1.21)

For example, this could be a bunch of qubits, or it could be the spatial degree of

freedom and spin degree of freedom of a single spin-1/2 particle H = span {|x〉} ⊗
span {|↑〉 , |↓〉}. In the first example, one would usually arrange the qubits at different

locations in space, so this decomposition does reflect spacetime locality. In the second

example, however, the two degrees of freedom literally live at the same spacetime

point, so the decomposition has nothing to do with spacetime locality.

One often talks about “local interactions”. This means that we have a Hamiltonian

that couples, for example, sets of k factors. Here we are going to be concerned with
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a different issue: local vs. non-local measurements. The formal definition of a local

measurement is that it is described by POVMs that factor:

Ea = Ea1 ⊗ Ea2 ⊗ · · · (local measurement) (1.22)

where each Eai acts on Hi, the ith tensor factor, and a = (a1, a2, . . .) is some vector

of outcomes. To understand this definition, it is helpful to go back to our system-

apparatus picture. Suppose that to each system site Si with Hilbert space Hi, we

attach a measurement system Mi, and a (2-local) coupling Ui that couples Si to Mi.

The total coupling then factors U = U1 ⊗ U2 ⊗ · · · . See Fig. 2. We can then find a

basis |ai〉i on each of these Mi, and consider the total Kraus operator for measuring

all of these at once:

Ka = 〈a1a2 · · · |U |00 · · ·〉M =
∏
i

〈ai|Ui|0〉Mi
=
⊗
i

Kai (1.23)

which in turn gives a POVM

Ea = K†aKa =

(⊗
i

K†ai

)(⊗
j

Kaj

)
=
⊗
i

Eai (1.24)

with Eai = K†aiKai . This last equality follows from associativity of the tensor product

over normal matrix multiplication: (A⊗B)(A′⊗B′) = AA′⊗BB′. This overly formal

discussion encodes a very simple idea: a local measurement is just one that can be

described by locally coupling a single measurement apparatus to each factor Hi of

the system Hilbert space and measuring those apparati in parallel.

This can be compared with non-local measurements. These involve coupling mul-

tiple system factors to a single measurement apparatus; see Fig. 2 for an example.

This produces a POVM which does not factor as in Eq. (1.22). As an instructive

example, consider the case of two qubits HS = HA ⊗HB being measured by a third

qubit HM , in a protocol where we couple the qubits via a pair of CNOT gates [see

Eq. (1.8)]

USM = UAM ⊗ UBM = CNOTAM ⊗ CNOTBM , (1.25)

and then measure M in the computational basis {|a〉M} = {|0〉M , |1〉M}. It is a nice
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exercise to work out the Kraus operators:

K0 = 〈0|USM |0〉M = |0〉 〈0|A ⊗ |0〉 〈0|B + |1〉 〈1|A ⊗ |1〉 〈1|B =


1

0

0

1



K1 = 〈1|USM |0〉M = |0〉 〈0|A ⊗ |1〉 〈1|B + |1〉 〈1|A ⊗ |0〉 〈0|B =


0

1

1

0


(1.26)

where the matrices are in the |00〉 , |01〉 , |10〉 , |11〉 basis on HS = HA ⊗HB. These

give a simple POVM Ea = K†aKa = Ka since the Ka just square back to themselves,

and it is easy to see that the POVM is complete E0 + E1 = 1S. It is, however, non-

local: clearly the Ka are not products K0 6= KA0 ⊗KB0 , and similarly for the other

Kraus operator and POVMs.

Further reading

• Peres, Chapter 12

• Preskill, Chapter 3

• Jordan and Siddiqui, Chapters 2-4

Problems

1. A slightly more realistic photodetector model, which includes non-unit

absorption efficiency.

(a) Define η as the fractional power/energy of incident light that is absorbed,

i.e., Eabsorbed = ηEincident. Following the photodetector model in the text

above, let HS = span{|0〉 , |1〉} denote the space of either 0 or 1 incident

photons, and HM = span{|g〉 , |e〉} denote the relevant electron ground and

excited states. Write down a unitary U on HS ⊗HM that describes the

interaction, now including the possibility that an incident photon might

not be absorbed. Show that U is unitary and explain how it correctly

encodes the definition of η.
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(b) Assume the photodetector is prepared in its ground state and compute the

Kraus operators and POVM elements.

(c) Consider an equal superposition of the incident photon ∼ |0〉 + |1〉. Cal-

culate the probability that the detector clicks. Give an interpretation of

this result, i.e., compare the answer when η = 1 to the finite efficiency case

η 6= 1; what is the physics of the difference?

2. A Hamiltonian model for the amplifier. As discussed above, our toy

amplifier model Eq. (1.7) is essentially the CNOT gate. Here we will explore

how this gate can be generated through Hamiltonian evolution, and how a

“weak” version can be generated.

(a) Let H = g(1S−Z)⊗(1M−X̃) be the “logical” Hamiltonian on the qubit +

amplifier, where as above we’re in the “logical” space H̃M = span{|0̃〉 , |1̃〉}
for the amplifier, and the Z, X̃ are Pauli operators. The coupling constant

g has units of a frequency. Compute U(t) = eiHt explicitly.

(b) Calculate how long the interaction should be turned on, t = t∗, to produce

an exact CNOT gate.

(c) Consider the measurement discussed above, where the amplifier is ini-

tialized in |0̃〉, coupled to the qubit with U(t), and then the amplifier is

measured in the |0̃, 1̃〉 basis. Compute the Kraus operators and POVM

elements as a function of θ = gt.

(d) Find the probabilities P (0̃) and P (1̃) with an arbitrary initial qubit state

|ψ〉 = a |0〉 + b |1〉. For small t ≈ 0, give an interpretation in terms of

information gained about the qubit state.

(e) Calculate the post-measurement states of the qubit, given the outcome 0̃

or 1̃. Compare the limits t ≈ 0 and t = t∗. Give an interpretation in terms

of information gained about the qubit state, and the resulting “collapse”.

16



2. Discrete-variable (“qubit”) measurements

In this section, we will illustrate the basic formalism with a few choice examples

where the system S has a finite dimensional Hilbert space. First we analyze the

Stern-Gerlach experiment in substantially more detail than one usually encounters.

We then move to an actual qubit architecture, a trapped ion or neutral atom, where

the states |0〉 , |1〉 refer to electron levels split by a hyperfine interaction.

2.1. Stern-Gerlach experiment

Let’s begin with the Stern-Gerlach experiment, not because it is important (which it

is) but because it is so simple that we can treat every aspect of it analytically.

Everyone knows the setup. We prepare a beam of electrically neutral, spin-1/2

particles.1 This is sent through a localized magnetic field with a gradient ∂Bz/∂z 6= 0.

The magnetic dipole interaction can then be Taylor expanded, leading to a term

V = µ ·B(x) ⊃ µ0
∂Bz

∂z
σzz (2.1)

which leads to a force along the z-axis

Fz = µ0
∂Bz

∂z
σz (2.2)

which depends on the spin-z state of the atom. Here µ = µ0σ is the magnetic moment

operator on the spin. Thus, an atom prepared in |0〉 = |↓〉 will be pushed downwards

and an atom prepared in |1〉 = |↑〉 will fly upwards. Thus, one can measure the spin

state by seeing where the atom is in space after the interaction.

Now let us analyze this in detail, and in particular see what happens when we

take into account the finite width of the beam and finite time of the free flight after

the magnetic field interaction. The Hilbert space HS represents the spin state (we

will continue to use qubit notation |0, 1〉 as defined in the previous paragraph). The

apparatus HM will be represented by a one-dimensional particle, HM = span{|z〉 | z ∈
R}, i.e., as usual we suppress the actual amplifier and readout and just refer to a

single degree of freedom into which we will encode the spin state. This choice of HM

is actually not quite right in a pretty interesting way, which we will discuss later in

this section.2

1Historically, the experiment was done with neutral silver atoms, because they have vanishing

nuclear spin and a single valence electron, so the whole atom has magnetic momentum given entirely

by the electron spin.
2Warning: the discussion on this point will be heterodox; all the books I found just take for

granted that this is the right description.
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First we need to specify an initial state of the measurement apparatus M . Here

this is an arbitrary position-space wavefunction ψM(z); we will ignore the transverse

directions. (Implicitly we are assuming that the beam travels with some fixed mo-

mentum along the x-axis). Thus let’s specify a quasi-realistic initial condition, a

Gaussian beam

|0〉M =

∫
dz ψM(z) |z〉M , ψM(z) = N exp

{
− z2

4∆z2
0

}
, (2.3)

where N = (2π∆z2
0)1/4 is the usual Gaussian normalization. The initial uncertainty

∆z0 will play an important role in what follows. We are thinking of this as the state

of the beam right when it hits the magnetic field, which we will think of as t = 0. This

itself is an approximation since really there is also a wavepacket on the transverse

axes and thus a finite spread and interaction time, but let’s not get carried away.

Next, we need to figure out the unitary U that couples S to M . Let v be the beam

velocity along the beam axis (say, x), and assume that the field gradient is localized

to a length δx. If we assume that v is sufficiently large and δx is sufficiently small

(you will make this precise in a homework exercise), we can approximate the time

evolution as an instantaneous pulse

Uint = exp {−i∆pzσz} , (2.4)

where the impulse delivered along the z-axis is∫
dt Fz ≈

δx

v
µ0
∂Bz

∂z
σz =: ∆pσz. (2.5)

A common terminology is that we have a “state-dependent force”. Notice that in

Uint, the quantity ∆p is a number, while z and σz are operators. Specifically, since z

is the generator of translations in momentum space, and σz is diagonal in the spin-z

basis, what this operator does is to take

Uint |0〉S |p〉M = |0〉S |p+ ∆p〉M
Uint |1〉S |p〉M = |1〉S |p−∆p〉M ,

(2.6)

where here and after p = pz is the momentum in the z-axis, so [z, p] = i. The initial

state [Eq. (2.3)] written in momentum space is

|0〉M =

∫
dpψM(p) |p〉 , ψM(p) =

N√
2π

exp

{
− p2

4∆p2
0

}
, ∆p2

0 = 1/4∆z2
0 , (2.7)
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another Gaussian centered around p = 0. The joint state thus evolves as

Uint |0〉S |0〉M = |0〉S
∫
dpψM(p) |p+ ∆p〉M

Uint |1〉S |0〉M = |1〉S
∫
dpψM(p) |p−∆p〉M .

(2.8)

Finally, we have to deal with the fact that the particle will freely evolve under the

pure kinetic term

Hfree =
p2

2m
(2.9)

between the interaction point t = 0 and when it hits the screen at t > 0.

The free evolution of a Gaussian wavepacket causes two effects: it moves the av-

erage location in position space z(t) = pt/m, and it also causes wavepacket spreading

∆z(t) ∼ t/(m∆z0). Dealing with the wavepacket spreading is annoying. Let’s assume

that the beam freely evolves for t sufficiently short (again made precise in the home-

work) so that we can ignore it. To be more specific, let’s re-write the post-interaction

M states in position space∫
dpψM(p) |p±∆p〉 =

∫
dzdp√

2π
ψM(p)ei(p±∆p)z |z〉

=

∫
dz ψM(z)e±i∆pz |z〉 ,

(2.10)

using the fact that the state is Gaussian. This last expression is intuitive: the M

states just after the interaction are Gaussians centered around z = 0 but now with

some non-trivial momentum ±∆p. Now let’s approximate the free evolution as simply

moving the centers of these packets by the appropriate amount:

Ufree(t)

∫
dz ψM(z)e±i∆pz |z〉 ≈

∫
dz ψM

(
z ± ∆p

m
t

)
|z〉 . (2.11)

This can be more formally justified using a stationary phase approximation.

The total evolution from the interaction is U = Ufree(t)Uint. From the above results

we have

U |0〉S |0〉M = |0〉S |0(t)〉M
Uint |1〉S |0〉M = |1〉S |1(t)〉M ,

(2.12)

where the conditional states of the “measurement apparatus”, i.e., the states of the

motional degree of freedom of the atom, are

|0(t)〉M =

∫
dz ψM

(
z − ∆p

m
t

)
|z〉

|1(t)〉M =

∫
dz ψM

(
z +

∆p

m
t

)
|z〉 ,

(2.13)

19



that is, position-space Gaussians shifted by a relative amount 2∆pt/m.

Finally, we can consider what any of the above means in terms of the actual

measurement. Let’s continue to follow the general formalism given in the first chapter.

We assume that we can do a von Neumann measurement on the position variable,

i.e., projectively measure it. Notice that, in general for finite t > 0, the two M states

are not orthogonal. Their overlap is just the overlap of two shifted Gaussians:

〈0(t)|1(t)〉M = exp

{
−(2∆pt/m)2

∆z2
0

}
6= 0. (2.14)

which means that we cannot do a projective measurement in the |0(t)〉 , |1(t)〉 basis.

Of course, as t → ∞, the overlap goes to zero and then the projective measurement

makes sense; this is the limit in which the experiment is usually implicitly described.

However, we can be much more general.

Since we can’t do a projective measurement on the |0(t)〉 , |1(t)〉 states, let’s re-

sort to what we can do: projectively measure the position z. This means that the

measurement outcomes a = z are drawn from a continuous spectrum, i.e., the atom

in principle can land at any value of −∞ < z < ∞. Using Eqs. (2.12) and (2.13),

the Kraus operators are

Kz = 〈z|U |0〉M = ψM

(
z − ∆p

m
t

)
|0〉 〈0|S + ψM

(
z +

∆p

m
t

)
|1〉 〈1|S , (2.15)

which in turn gives the POVM elements

Ez =

∣∣∣∣ψM (z − ∆p

m
t

)∣∣∣∣2 |0〉 〈0|S +

∣∣∣∣ψM (z +
∆p

m
t

)∣∣∣∣2 |1〉 〈1|S . (2.16)

It is instructive to check that these satisfy the completeness relation
∫
dzEz = 1S.

To get some intuition for what this POVM is telling us, consider the simple case

where we prepare the beam in the equally weighted superposition state

|ψ〉S = (|0〉S + |1〉S)/
√

2. (2.17)

The probability distribution of hits on the screen is then given by

P (z) = 〈ψ|Ez|ψ〉 =
1

2

∣∣∣∣ψM (z − ∆p

m
t

)∣∣∣∣2 +
1

2

∣∣∣∣ψM (z +
∆p

m
t

)∣∣∣∣2 . (2.18)

This is just a sum of two Gaussians whose peaks are shifted by 2∆pt/m. In the

limit t → ∞ these peaks are cleanly separated and we recover the usual Stern-

Gerlach measurement, where the two spin states are sent to two distinct locations
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on the screen. In the limit t ≈ 0, on the other hand, the two Gaussians are nearly

overlapping, and we get very little information.

Consider, instead of the pure state (2.17), preparing the totally depolarized state

ρS =

(
1/2 0

0 1/2

)
(2.19)

which is a classical statistical mixture of spin up and down. The distribution of hits

on the screen is

P (z) = trS(ρSEz) =
1

2

∣∣∣∣ψM (z − ∆p

m
t

)∣∣∣∣2 +
1

2

∣∣∣∣ψM (z +
∆p

m
t

)∣∣∣∣2 , (2.20)

identical to (2.18)! The key point is that the POVM and Kraus operators are diagonal

in the spin-z basis. Physically, this reflects the fact that the measurement is insensitive

to any “coherence” in the quantum state of the spin, and it ultimately traces back to

the interaction (2.6) being diagonal in the spin-z basis.

Finally, let’s introduce a little information theory. We can quantify the informa-

tion “gain” in this measurement in terms of entropy. Consider preparing the mixed

state Eq. (2.19), which has von Neumann entropy

S(0) = − trS(ρS ln ρS) = −
[

1

2
ln

1

2
+

1

2
ln

1

2

]
= ln 2. (2.21)

The second equality is supposed to remind you how to compute a von Neumann

entropy: diagonalize ρS and just sum over the eigenvalues. This state has the most

possible entropy for a two-dimensional system. Now, suppose we prepare the mixed

state (2.19) and do a measurement, obtaining a hit on the screen at position z. The

post-measurement state is

ρS → ρS(z) =
KzρSK

†
z

P (z)
= N(t)

(
e−λ−(t) 0

0 e−λ+(t)

)
, (2.22)

where

N(t) =
1

e−λ−(t) + e−λ+(t)
, λ±(t) =

(z −∆pt/m)2

2∆z2
0

. (2.23)

Consider the case of a weak measurement, which here means small t, i.e., we don’t let

the particle propagate long enough to clearly distinguish the two Gaussians on the

screen. In this case, we can approximate

ρS(z) ≈

(
1
2
− z∆pt

2∆z2
0

0

0 1
2

+ z∆pt
2∆z2

0

)
(2.24)
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which is just the original, totally mixed state, plus a small correction. The entropy

works out to

S(z) ≈ ln 2− z2∆p2t2

2∆z4
0

. (2.25)

What this says is that our post-measurement state, conditioned on the outcome that

we got a hit at location z, has slightly lower entropy than the original, as it should.

You can check various other intuitive facts: for example, if the hit is far from the

origin (larger |z|), the entropy decreases more; if the initial beam is more collimated

(smaller ∆z0), the entropy decreases more; etc.

Finally, a comment on the state update rule in this system. The preceding discus-

sion about entropy used the state update ρ→ KzρK
†
z/P (z) to calculate the state of

the spin S after the measurement. The answer is that we have a spin which is slightly

less polarized, which sounds entirely reasonable. In the case of the initial pure state

(2.17) and a projective measurement (t → ∞, for example), the state update would

say that the spin is projected into either the up or down state. But is it? What is

the actual, physical condition of the spin after these measurements? It’s a mess: the

atom gets absorbed by the screen, winds up in some complicated bound state with

the other screen atoms, etc. There’s absolutely no way that the spin is just sitting

there in some pure spin up state. It is instructive to decide for yourself whether this is

actually the right description, or if we implicitly mis-applied one of the measurement

rules outlined in Table 2. I’ll leave this exercise to you in the homework. In the next

section, we will instead give another kind of qubit mesurement where the physical

picture of the post-mesurement state is much more clear.

2.2. Hyperfine atomic qubit

Now we move on to a qubit architecture that is actually used in practice. Con-

sider some atom with a single valence electron, for example neutral hydrogen H or

an ion like Be+. The electrons form a discrete set of bound states |n`m〉, with dis-

crete energy levels. A beautiful way to encode a qubit is to find two such levels,

call them |0〉 and |1〉, split by an energy ∆E01 = ω lying in either the microwave

(100 MHz . ω . 10 GHz) or optical (100 GHz . ω . 1000 THz) range [1]. Typically

these splittings come from the perturbation due to the hyperfine coupling of the nu-

cleus to the electron, thus the name. Applying drives at this frequency for different

durations (pulse lengths) can then enact arbitrary single-qubit gates, using standard

Rabi oscillation physics. Coupling these atoms together to form n-body gates can be

22



|1〉

|0〉

|r〉

ω01 = ∆E01

ωf

Figure 3: Level diagram for Dehmelt’s electron shelving method. Here |0〉 , |1〉
represent two electron energy levels in the atom, typically split by a hyperfine inter-

action. The level |r〉 is connected to the |0〉 state by a fluorescence transition but

not to the state |1〉, at least to leading order. We assume that the spontaneous emis-

sion timescales τ10 � τr0. Adapted from Liebfried, Blatt, Monroe, and Wineland,

Quantum Dynamics of Single Trapped Ions, Rev. Mod. Phys. 75 (2003).

done in a variety of ways, for example forming ionic crystals and using the phonons,

as in the proposal of Cirac and Zøller.

Here, we will focus on how the readout of a single such qubit can be performed,

using a method first suggested by Dehmelt in 1975 known as “electron shelving”. This

is a nice example which shows how a projective measurement arises from a sequence

of non-projective measurements.

The basic goal is to engineer a measurement in the |0〉 , |1〉 basis. In electron

shelving, we also make use of some third level |r〉 in the atomic spectrum, with the

following properties:

• There is a transition |r〉 → |0〉, in which a photon with frequency ωf is spon-

taneously emitted. This transition is “strong” in the sense that it happens

with very high probability in a very short time τf . The subscript f stands for

fluorescence. Obviously there is also a transition |0〉 → |r〉 by unitarity.

• There is not a transition |r〉 ↔ |1〉, or at least this transition is very suppressed

compared to the |r〉 ↔ |0〉 transition.

These energy levels and transitions are summarized in Fig. 3. So although we fun-

damentally want to use |0〉 and |1〉 as the qubit, the actual system Hilbert space is

really three-dimensional: HS = span{|0〉 , |1〉 , |r〉}.
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For the measurement apparatus HM we will use photons of frequency ωf . To

highlight the basic quantum mechanics, we will think of the measurement apparatus

M as a single photon (or more accurately, a sequence of single photons, discussed at

the end). To describe its Hilbert space we start with a simple picture of the essential

physics.

Consider what happens when we send a single photon, say in a collimated laser

beam so it has fixed momentum |k〉M with frequency ωf = |k|, at the atom. If the

atom is initialized in |0〉, then

|0〉S ⊗ |k〉M → Ae |r〉S ⊗ |vac〉M +
√

1− |Ae|2 |0〉S ⊗ |k〉M , (2.26)

where Ae is the absorption amplitude for the |0〉 → |r〉 transition, and |vac〉M is the

state of the electromagnetic field once the photon is absorbed. On the other hand, if

the atom is in |1〉 or |r〉, then to leading order nothing happens,

|1〉S ⊗ |k〉M → |1〉S ⊗ |k〉M
|r〉S ⊗ |k〉M → |r〉S ⊗ |k〉M .

(2.27)

Now, after a time of order τf , if the photon was absorbed and the atom excited to |r〉,
the fluorescent decay will occur, producing an emitted photon state |γ〉M which is no

longer collimated but has some kind of angular distribution (e.g., a dipole pattern if

|r〉 → |0〉 is an allowed dipole transition),

|r〉S ⊗ |vac〉M → |0〉S ⊗ |γ〉M . (2.28)

Putting all of this together, we can model the Hilbert space of the light as HM =

span{|vac〉 , |k〉 , |γ〉}, and the interaction as a unitary whose important matrix ele-

ments are

U |0〉S |k〉M = Ae |0〉S |γ〉M +
√

1− |Ae|2 |0〉S |k〉M
U |1〉S |k〉M = |1〉S |k〉M
U |r〉S |k〉M = |r〉S |k〉M .

(2.29)

At this stage, we can forget about the |r〉 state, since an initial state in the span{|0〉 , |1〉}
subspace will remain in that subspace under (2.29). We can also forget about the

state |vac〉 of the electromagnetic field, for the same reason.

Now, let’s use the interaction (2.29) to enact a measurement of the qubit state.

We prepare the initial state of the measurement apparatus, the single photon:

|0〉M = |k〉M (2.30)
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Figure 4: Trapped ion qubit readout with Dehmelt shelving. Each row corre-

sponds to a different measurement of 53 trapped ion qubits, showing either a bright

spot (|0〉) or dark spot (|1〉), in our notation. Figure from Chris Monroe’s group

at Maryland/IonQ. See https://iontrap.umd.edu/2017/12/01/quantum-simulation-

with-individual-control-of-53-qubits/.

and then assume that we can projectively measure photon in the basis |k〉 , |γ〉. This

is a big simplification: to measure the |γ〉 state projectively would physically require

having a perfect photodetector with 4π − ε coverage, where the ε is a second pho-

todetector aligned right on the beam spot defined by k. See Fig. ??. In reality the

photodetector will have some less-than-full coverage and finite efficiency, but as we

will see shortly this isn’t very important because we can repeat this measurement

with many photons.

With this setup, the Kraus operators are easy to calculate:

K0 = 〈0|U |0〉M =
√

1− |Ae|2 |0〉 〈0|S + |1〉 〈1|S
Kγ = 〈γ|U |0〉M = Ae |0〉S 〈0|S .

(2.31)

The corresponding POVM is

E0 =
(
1− |Ae|2

)
|0〉 〈0|S + |1〉 〈1|S

Eγ = |Ae|2 |0〉S 〈0|S .
(2.32)

These clearly satisfy the completeness relation E0 + Eγ = 1S (where we’ve dropped

the |r〉 state from the S basis).

Ok, now let’s see how this produces a qubit measurement. Prepare the qubit in
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an arbitrary superposition

|ψ〉S = a |0〉S + b |1〉S . (2.33)

The outcome of a measurement is that we we get either an unscattered photon |k〉M =

|0〉M or a scattered one |γ〉M . These occur with probabilities

P (unscat) = P (0) = 〈ψ|E0|ψ〉S =
(
1− |Ae|2

)
|a|2 + |b|2

P (scat) = P (γ) = 〈ψ|Eγ|ψ〉S = |Ae|2|a|2.
(2.34)

Notice in particular that the photon will scatter only if the qubit was in |0〉. In

contrast, the photon can go through unscattered whether the qubit was in |1〉 or

|0〉, although the latter is not likely, occurring with a probability proportional to

ε2 := 1 − |Ae|2 < 1. This factor ε may be much less than one ε � 1 but could be

almost 1, but it is definitely less than 1, because the absorption process is unitary.

Thus, if we get a scattered photon we immediately know the qubit state, but if we

get an unscattered photon we have some remaining uncertainty.

To make this more concrete, consider the post-measurement state, using the usual

rule |ψ〉 → Koutcome |ψ〉 /
√
P (outcome). Here this is

|ψ〉S →


√

1− |Ae|2a |0〉S + b |1〉S√
(1− |Ae|2)|a|2 + |b|2

given outcome “unscattered′′ (0)

Aea√
|Ae|2|a|2

|0〉S given outcome “scattered′′ (γ)
. (2.35)

In the case that we see the photon get scattered, the resulting state is simply |0〉S, up

to some phase. That is, the qubit is projected to the |0〉S state. On the other hand,

if the photon goes through unscattered, the resulting state

|ψ0〉S =

√
1− |Ae|2a |0〉S + b |1〉S√
(1− |Ae|2)|a|2 + |b|2

≈ a

|b|
ε |0〉S +

b

|b|
|1〉S (2.36)

is still a coherent superposition of |0〉S and |1〉S. However, the coefficient in front of

|1〉S is order one, while the coefficient in front of |0〉S is order ε < 1, so the state is

“more” |1〉S than initially. Unlike the Stern-Gerlach example, here it is physically

very clear that the qubit really is in this state after the measurement. In words, the

first photon measurement has partially collapsed the qubit state into either |0〉 or |1〉.
Since the qubit state really physically changes like this, we can do the measurement

again! What happens? If the photon was scattered initially, then the qubit is in |0〉S
with unit probability, and therefore a subsequent measurement (another photon) will
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leave the qubit in |0〉S [see Eq. (2.29)]. On the other hand, if the initial photon went

unscattered, the probability of getting another unscattered photon is

P (0|0) = 〈ψ0|E0|ψ0〉S

=
(1− |Ae|2)2|a|2 + |b|2

(1− |Ae|2)|a|2 + |b|2

≈ 1− |a|
2

|b|2
ε2.

(2.37)

What this means is that if the first photon was unscattered, then with probability

nearly one, the second photon will also be unscattered, which gives us more confidence

that the qubit is in the state |1〉S. Notice that the “error” is now down by another

power of ε: the qubit state becomes

|ψ〉 → |ψ0〉 =
K0 |ψ〉√
P (0)

→ |ψ0,0〉 =
K0K0 |ψ〉√
P (0)P (0|0)

≈ a

|b|2
ε2 |0〉+

b

|b|
|1〉 ,

(2.38)

where you can check the last equation easily. Again, we see that the state is “more”

projected onto the |1〉S state.

The upshot is that if we send in a bunch of photons, the first few act to collapse the

qubit state down to either |0〉S or |1〉S, and then all the subsequent ones will simply

scatter or not, accordingly. The actual data is simple: you set up some CCDs or other

photon collectors in a solid angle around the qubit, and either you see a bright spot

(for a qubit in |0〉S, which causes all the light to scatter) or you see a dark spot (for

a qubit in |1〉S, which causes almost all the light to pass through unscattered). See

Fig. 4. In this way we turn a partial/weak measurement into an effectively projective

measurement, including the amplification step. This is, in practice, how almost all

projective measurements arise.

Further reading

• Jordan and Siddiqui, ch 2-4

• Steve Girvin’s lecture notes on circuit QED, ch 7.

Available at https://girvin.sites.yale.edu/lectures.
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Problems

1. Stern-Gerlach approximations and interpretation.

(a) Write an expression for the exact time evolution of the beam just before

it crosses the magnetic field until just after. Do not forget the free evo-

lution from the kinetic energy. Find quantitative conditions on the beam

velocity v and width of the field δx that justify our approximation of an

instantaneous interaction.

(b) Suggest a method to non-destructively detect the position of the silver

atom, rather than the destructive measurement made by the screen.

2. Non-orthogonal states cannot be distinguished in a single measure-

ment. Let |ψ〉 and |φ〉 be two states of some system S, and assume that they

are not orthogonal 〈ψ|φ〉 6= 0. Show that there is no measurement that can de-

termine with complete certainty which state the system was prepared in. Hint:

use the fact that unitary evolution preserves inner products. [The purpose of

this problem is to justify the discussion around Eq. (2.14), although there we

applied the argument to M , not S. This is problem 1.17 in K. Jacobs, Quantum

Measurement Theory and its Applications ].

3. Entropy and the approach to a projective measurement. Consider our

hyperfine measurement model. For simplicity assume Ae is real, and assume

the non-absorption probability is small: 1− |Ae|2 = ε2 � 1. The answer to all

of these problems can be expressed just to leading order in ε.

(a) Prepare the qubit in the totally mixed state of equal weights. Find the

states ρ0, ργ of the qubit after a single photon measurement, given outcome

0 or γ.

(b) Calculate the von Neumann entropy of the state ρ0 and compare it to the

initial entropy.

(c) Now suppose we do another measurement and get 0 again. Find the con-

ditional state ρ0,0, and calculate its entropy.

(d) Conjecture or prove a formula for the entropy of the state assuming N

consecutive outcomes of an unscattered photon 0, 0, 0, . . .. Interpret this

in terms of purity of the resulting state.
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3. Continuous-variable measurements

We now turn to measurements on continuous variable systems, where dimH = ∞.

We will be non-rigorous in the usual ways; in particular we assume that we can make

sense of the Hilbert space in the first place and don’t have to worry about things like

the von Neumann algebra type. In practice we are just going to talk about things

isomorphic to a non-relativistic particle moving in one spatial dimension.

The main difference between this and discrete-variable systems is that we have

to deal with continuous bases like position |x〉 or momentum |p〉. One should be

skeptical of the operational meaning of these bases. Does it really make sense to

make projective measurements in the |x〉 basis? If we did that, the post-measurement

state would be a position eigenstate. Put another way, its momentum state would be

completely flat in momentum, i.e., would have components at arbitrarily high energy.

Such states would be pathological for many reasons! In reality, measurements of

continuous variables always come with some level of “error”, or in our language, are

not completely strong/projective in the basis.

We begin with a simple model of a quasi-realistic position measurement. This will

set the stage for a discussion of what Heisenberg uncertainty means and what actually

happens if we sequentially measure a pair of non-commuting observables. We then

move on to the most important cases of real measurements in the continuous domain:

measurements of electromagnetic modes.

3.1. Position measurements

Consider making a measurement of the location of a particle S prepared in some state

|ψ〉S =

∫ ∞
−∞

dxψS(x) |x〉S . (3.1)

We we could do this, for example, with a time-of-flight measurement: we prepare

some other particle M (say, a photon) which we model as starting in some Gaussian

wavepacket

|0〉M =

∫ ∞
−∞

dx
e−x

2/4∆x2
M

(2π∆x2
M)1/4

|x〉M . (3.2)

We then shoot M at S, assume it reflects, and measure where M is after some time t

(or really, we set up some M detector and ask for the time t at which M is reflected

back to the detector). Crucially, the detector particle M has its own position-space

uncertainty ∆xM , which means that it will only give us imperfect information about
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the location of S. Given the discussion in the previous sections, it seems natural to

model this whole process as a set of Kraus operators

Kx =

∫ ∞
−∞

dy
e−(x−y)2/4∆x2

M

(2π∆x2
M)1/4

|y〉 〈y|S (3.3)

on the system. Here x means the outcome of the measurement of the position of S,

as usual. It is instructive to demonstrate that the POVM

Ex = K†xKx =

∫ ∞
−∞

dy
e−(x−y)2/2∆x2

M

(2π∆x2
M)1/2

|y〉 〈y|S (3.4)

satisfies the usual completeness relation
∫
dxEx = 1S (notice that the width in the

Gaussian changed by a factor of 2, as did the normalization power). One could derive

these Kraus operators by explicitly modeling the interaction U between M and S

as we did above, but let’s just start directly at the Kraus operator level. What

this POVM represents is a measurement of the S position, but the outcomes have a

measurement uncertainty ∆xM due to the “imperfect” apparatus.

What happens when we measure the position of S? To get some intuition, consider

preparing S in a state which is localized in space, centered at x = x0 with some spread

∆x2
S, say the Gaussian state:

|ψx0〉 =

∫ ∞
−∞

dx
e−(x−x0)2/4∆x2

S

(2π∆x2
S)1/4

|x〉 . (3.5)

Here and for the rest of this section, we are only dealing with the system S states,

so we suppress the S subscripts. The probability of “finding the particle at x” (i.e.,

obtaining outcome x), is

P (x) = 〈ψx0|Ex|ψx0〉

=

(∫ ∞
−∞

dy
e−(y−x0)2/4∆x2

S

(2π∆x2
S)1/4

〈y|

)
×

(∫ ∞
−∞

dz
e−(x−z)2/2∆x2

M

(2π∆x2
M)1/4

|z〉 〈z|

)

×

(∫ ∞
−∞

dy′
e−(y′−x0)2/4∆x2

S

(2π∆x2
S)1/4

|y′〉

)

=
e−(x−x0)2/4∆x2

tot

(2π∆x2
tot)

1/2
,

(3.6)

where

∆x2
tot = ∆x2

S + ∆x2
M (3.7)

represents the total uncertainty in the measurement. The first term comes from the

uncertainty in the system state itself, while the second comes from the imperfect
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nature of the measurement. This is, of course, a normalized Gaussian distribution

centered at the (most likely value of the) position of the system S, namely x = x0.

The uncertainties add in quadature, as one would expect.

The probability distribution of outcomes, Eq. (3.6), is wider than both the initial

system state and measurement uncertainty. What about the post-measurement state?

One might expect that the width narrows, if we do a good measurement. In general,

given that we find the particle at location x, the state update rule gives

|ψx0〉 →
Kx |ψx0〉√
P (x)

=

∫ ∞
−∞

dy
e−(x′0−y)2/4(∆x′S)2

[2π(∆x′S)2]1/4
|y〉 . (3.8)

This can be seen by straightforward calculation, using the fact that the product of

two Gaussians is a new Gaussian. The center and width have shifted:

x0 → x′0 = x0
∆x2

M

∆x2
tot

+ x
∆x2

S

∆x2
tot

∆x2
S → (∆x′S)2 =

∆x2
S∆x2

M

∆x2
tot

.

(3.9)

These results seem natural. The post-measurement state is centered somewhere be-

tween the original state’s center x0 and the measurement outcome x, with relative

weights depending on the uncertainty in the two factors.

For example, suppose we do a reasonably “strong” measurement, where the mea-

surement uncertainty is much less than the initial uncertainty in the state: ∆xM �
∆xS, and get outcome x. Then we have ∆x2

tot ≈ ∆x2
S, and so

x′0 ≈ x

(∆x′S)2 ≈ ∆x2
M .

(3.10)

This is basically what you would expect from a projective measurement of position,

except that the resulting state has a finite-width distribution ∆x2
M , which heuristically

goes to zero in the projective limit.

3.2. Heisenberg’s microscope and measurement back-action

Let’s connect the discussion above to a commonly-repeated interpretation of Heisen-

berg’s uncertainty relation

∆x2∆p2 ≥ 1

4
. (3.11)

One often hears that Eq. (3.11) means that if you first measure the position of

something, then measure its momentum, that the product of the uncertainties of the
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measurements is lower-bounded by 1/4. This is incorrect. The right interpretation

of Eq. (3.11) is to first write it as 〈∆x2∆p2〉 ≥ 1/4, where the expectation value is

taken in some particular quantum state at one fixed time. This is a statement about

joint probability distributions in a fixed state and has nothing to do with a pair of

measurements on the same system.

We are, however, now in position to directly analyze Heisenberg’s microscope ex-

periment, where one literally measures the position of a system S, gets some outcome,

and then measures the momentum. We prepare the system S in a localized Gaussian

state |ψx0〉 as above, measure the position with the POVM of width ∆x2
M , and then

measure it again using the analogous momentum-space POVM. Let’s work in the

limit of a “strong” measurement ∆x2
M � ∆x2

S, as in Eq. (3.10). The first set of

measurement outcomes has variance

∆x2
meas = ∆x2

tot ≈ ∆x2
S, (3.12)

where ∆x2
S is the uncertainty of the initial state itself. The approximation is justified

by the assumption that we made a strong measurement. Now, the state after the

measurement has a position space uncertainty

∆x2
S → (∆x′S)2 ≈ ∆x2

M � ∆x2
S, (3.13)

as in Eq. (3.10). The position space wavefunction has narrowed. But then the

momentum space wavefunction must have increased,

∆p2
S → (∆p′S)2 =

1

4(∆x′S)2
� ∆p2

S. (3.14)

This follows by direct calculation [e.g., by inserting a complete set of momentum

eigenstates into Eq. (3.8)], but is also clear from the usual Heisenberg uncertainty

relation.

Suppose that we now measure p, where we describe the measurement using a

POVM of width ∆p2
M . Then the distribution of outcomes is identical to the position-

space results (since everything here is Gaussian), and the analogous width of the

outcome distribution is

(∆p′)2
meas = (∆p′S)2 + ∆p2

M =
1

4(∆x′S)2
+ ∆p2

M ≥
1

4(∆x′S)2
, (3.15)

using Eq. (3.14). Thus we have the product of uncertainties in the two measurements:

(∆x)2
meas(∆p

′)2
meas ≥

∆x2
S

4(∆x′S)2
� 1

4
, (3.16)
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where the � comes from our use of a strong initial measurement, Eq. (3.10), which

says that (∆x′S)2 ≈ ∆x2
M � ∆x2

S.

What Eq. (3.16) tells us is that the product of uncertainties on this pair of

measurements is actually substantially worse than the simple product formula in the

Heisenberg uncertainty relation, Eq. (3.11). Notice that here everything was done

with Gaussian states that minimize Heisenberg uncertainty at each time step; we are

not doing anything sketchy by introducing large uncertainties by hand. One might

be skeptical that we somehow picked a sub-optimal pair of measurements; you will

explore this in a homework problem.

3.3. Number and quadrature bases; homodyne measurements

In this section we move on to measurements of harmonic oscillators, described by the

Hamiltonian

H = ωa†a, (3.17)

where as usual [a, a†] = 1. The most important example of these in practice are the

modes of the electromagnetic field, where a mode means excitations of the field with

a specific frequency ω and spatial momentum k. See Appendix A for a review of

the quantization of the electromagnetic field and its decomposition into such modes.

In the rest of this section we will often discuss the interpretation of the oscillator

in terms of a single mode of the electromagnetic field, in which case it describes

photons of fixed frequency and momentum. There are a number of important bases

for harmonic oscillators, which have very different properties in measurements. The

most commonly encountered bases are:

Number basis: These are defined as eigenstates of the number operator n̂ |n〉 =

n |n〉, where n̂ = a†a and n = 0, 1, . . . is an integer. These are energy eigenstates [i.e.,

eigenstates of the Hamiltonian, Eq. (3.17)]. For EM field modes, these are states

with a definite number of photons of the same fixed frequency and momentum.

Quadrature basis: Quadratures are the generalization of the position and mo-

mentum bases for a textbook harmonic oscillator. For any angle θ, we define the

Hermitian operator

Xθ :=
1√
2

(aeiθ + a†e−iθ), (3.18)

which is known as the quadrature variable at that angle. In particular, the quadra-

tures θ = 0 and θ = π are often used and given particular names,

X =
1√
2

(a+ a†), Y = − 1√
2

(a− a†). (3.19)
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For a mechanical oscillator, these are of course the position and momentum variables,

rescaled by their zero-point fluctuations to be dimensionless operators. In the EM

case, these are referred to as the amplitude and phase quadratures, for reasons dis-

cussed in App. A. They do not commute, but satisfy the canonical commutation

relation

[X, Y ] = i. (3.20)

Any θ quadrature can be used to define a continuous basis, via X̂θ |Xθ〉 = Xθ |Xθ〉,
where the eigenvalues Xθ run over the real numbers. These are just like the position

or momentum basis of a mechanical oscillator, so in particular the states are Dirac-

normalized and can be used to write the wavefunction of a general pure state. For

example, in the amplitude basis,

〈X|X ′〉 = δ(X −X ′), |ψ〉 =

∫ ∞
−∞

dX ψ(X) |X〉 (3.21)

with analogous expressions holding for any other value of θ. In particular we have

standard Fourier relations like 〈X|Y 〉 = eiXY /
√

2π.

Coherent state basis: The number and quadratures bases defined above are

the most common bases in which an oscillator is actually measured, as we will dis-

cuss below. However, the coherent states, defined as eigenstates of the annihilation

operator,

â |α〉 = α |α〉 , α ∈ C (3.22)

are also commonly encountered. These states are not orthogonal to each other but

rather satisfy

〈α|α′〉 = exp

{
−1

2

(
|α|2 + |α′|2 − 2α∗α′

)}
, i.e. | 〈α|α′〉 |2 = exp

{
−1

2

(
|α− α′|2

)}
,

(3.23)

which turns out to mean that they form an over-complete basis.3 The key property of

coherent states we will need immediately is that they behave somewhat like classical

states. To be precise, note that a coherent state does not have a definite number

3In particular, these give an extremely useful representation of an arbitrary density matrix

ρ =

∫
C

dαP (α) |α〉 〈α| ,
∫
C

dαP (α) = 1, (3.24)

known as the Glauber-Sudarshan representation. This suggests that we can interpret an arbitrary

state of one mode like a classical ensemble of coherent states with probability distribution P (α),

except that P (α) is not always positive, and thus not always an actual distribution! We will discuss

this much more later in class when we talk about “non-classical” states.
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of photons (it is not a number eigenstate), but the average number of photons in a

coherent state is

n = 〈α|n|α〉 = |α|2 (3.25)

while the variance is

∆n2 = 〈α|(n− n)2|α〉 = |α|2 = n. (3.26)

This means that the probability distribution of the photon number is Poisson (n =

∆n2), and importantly, ∆n/n ∼ 1/
√
n→ 0 as |α|2 = n→∞. Thus a large-amplitude

coherent state has vanishingly small number fluctuations. Another “classical”-like

behavior is that the expectation values of the quadratures obey classical equations in

these states. For example, one can calculate easily using Eqs. (3.17) and (3.22) that

〈α|X(t)|α〉 =
1√
2
|α| cos(ωt+ φ), (3.27)

where α = |α|eiφ. For a mechanical oscillator for example, this says that the position

x on average moves like a classical harmonic oscillator.

Some properties of these bases are collected in Appendix A. Let us now consider

actual measurements of the field in these bases and how they are implemented.

In some sense the most elementary basis for measurements is the number basis,

i.e., the energy basis. In the EM case, this corresponds to measurement of the energy

content of an EM mode, which in its fundamental limit means counting up the number

of photons. Another common terminology is that these are “intensity” or “square law”

measurements, because they are sensitive to the energy, which is quadratic in the EM

field ∼ E2 ∼ ωn. This is distinguished from quadrature measurements which are

linear in the field.

For now, we will make a simple model of an intensity detector, essentially following

the discussion in Sec. 1. There, we considered a toy model of a detector based on the

photoelectric effect, where we use excitations of electrons from a ground state |0〉M
into a conduction band |e〉M with an energy gap tuned to the frequency of incoming

light, ∆e0 = ω. Here we can just extend this by letting the detector have some large

number N � 1 of electrons so that it can detect more than one photon. Let |n〉M
denote the state of the detector with n excited electrons, and model the interaction

between the EM mode and these electrons as perfectly absorbing:

U |n〉S |0〉M = |0〉S |n〉M . (3.28)

Here S is the electromagnetic mode. The state |0〉S is the vacuum state â |0〉S = 0,
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i.e., the state with exactly zero photons. The Kraus operators are simple:

Kn = 〈n|U |0〉M = |0〉 |n〉S . (3.29)

This n labels the number of clicks seen in the electron count. The meaning of this

Kraus operator is clear: it takes in the state of n photons and outputs the vacuum,

meaning, the photons are all absorbed and the post-measurement state is the vacuum

|ψ〉S → Kn |ψ〉S /
√
P (n) = |0〉S. The POVM is

En = K†nKn = |n〉 〈n|S , (3.30)

so this enacts a projective, destructive measurement of the number of photons.

Measurements in the quadrature bases are slightly more subtle. The simplest

way to implement them (in the EM field) is by doing what is called a homodyne

measurement. This consists of first interfering light of known amplitude and phase,

for example the output of a laser or maser, with the mode of interest, and then

performing an intensity/number measurement on the resulting light. See Fig. 5.

To model this, we need to build up a key ingredient: the action of a beamsplitter.4

For our purposes, we can just describe this by its action on coherent states. Let

a, b be the annihilation operators of the two input modes to the beamsplitter. In

general, the beamsplitter can be modeled as a unitary which implements the following

transformation on a pair of incoming coherent states:

UBS |α〉 |β〉 = |α′〉 |β′〉 (3.31)

with

α′ = e−iφ1/2(α cosφ2e
−iφ3/2 − β sinφ2e

iφ3/2)

β′ = e−iφ1/2(α sinφ2e
−iφ3/2 + β cosφ2e

iφ3/2),
(3.32)

where φ1,2,3 are three arbitrary angles (corresponding to the three generators of SU(2),

which is unimportant for us [?]). For example, a 50-50 beamsplitter has φ1 = φ3 = 0

and φ2 = π/4, and outputs

α′ = (α− β)/
√

2, β′ = (α + β)/
√

2. (3.33)

Another useful example that we will use here is a mostly-transmissive mirror, where

φ1 = φ3 = 0 but φ2 = ε� 0, which gives

α′ ≈ (1− ε2)α− εβ, β′ ≈ εα + (1− ε2)β (3.34)

4The discussion here is based loosely on a combination of Mandel and Wolf, Chapter 21, and a

paper of Tyc and Sanders arXiv:quant-ph/0404090.
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a

b ≈ |B|eiθ

Uε

|n〉M a

b ≈ |B|eiθ

U50−50

|na〉M

|nb〉M
|n−〉M

Figure 5: Homodyne measurements of an electromagnetic field mode. Here

we show two common architectures for homodyne measurements. In both cases,

we start with both the mode of interest in some unknown state |ψ〉S, and another

mode of the same frequency prepared in a coherent state |B〉 with large amplitude

|B|2 = 〈nin〉 � 1 and known phase B = |B|eiθ. These modes are then sent through a

beamsplitter, which produces a new beam consisting of the superposition of |ψ〉S and

|B〉, i.e., encoding an interference pattern. This intefered beam is then measured with

intensity measurements. Left: unbalanced homodyne, where the signal is extracted

from a single intensity measurement after being sent through a mostly-transmissive

beamsplitter Uε with reflectivity ε� 1. Right: balanced homodyne, where the signal

is extracted from a differential measurement of two intensity detectors after a 50-50

beamsplitter.

Since this is the action of UBS on coherent states, and the coherent states are eigen-

vectors of the annihilation operators a |α〉 = α |α〉, b |β〉 = β |β〉, it follows that the

Heisenberg-picture version of the transformation acts in similar fashion:

a→ a′ = U †BSaUBS = e−iφ1/2(a cosφ2e
−iφ3/2 − b sinφ2e

iφ3/2)

b→ b′ = U †BSbUBS = e−iφ1/2(a sinφ2e
−iφ3/2 + b cosφ2e

iφ3/2).
(3.35)

One can give an explicit form of UBS in terms of an SU(2) matrix, see ??, but this

will not be needed here.

Now let’s analyze the unbalanced homodyne measurement (see Fig. 5, left). In

homework you will analyze the balanced version, which is more practical. The es-

sential idea is that we interfere the state of interest |ψ〉S, which is the mode a, with
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a large-amplitude coherent state |B〉 with known phase B = |B|eiθ. We also as-

sume that the reflectivity ε is small, but not so small, so that the average number

of B photons which is reflected and mixed with |ψ〉S is nLO = ε2|B|2 � 1. Here

the LO notation stands for “local oscillator”. Since this field is a large-amplitude

coherent state, we can approximate its mode operator as just a classical c-number.

In particular, the a′ mode after the beamsplitter has number operator

na → n′a = a
′†a′

= na(1− ε2)2a†a− ε(ab† + a†b) + ε2b†b

≈ na(1− 2ε2) + nLO − ε|B|(aeiθ + a†e−iθ),

(3.36)

up to terms of order ε3. Notice that this last term in parentheses is the quadrature

operator Xθ. So by interfering the input light with a LO of known phase θ, we are

imprinting the quadrature information onto the number operator. Let’s assume that

na itself (the number of photons in the signal) is small compared to nLO. This means

that we can drop this term and approximate

n′a ≈ nLO −
√
nLOXθ =⇒ Xθ =

n′a − nLO√
nLO

. (3.37)

That is, we can invert the relation: the value of Xθ is given by the number of photons

n′a in the beam after the beamsplitter, with Xθ = 0 corresponding to n′a = nLO.

Notice that Eq. (3.37) is an operator relation between the number operator and

quadrature operator.

Let’s make the measurement itself precise, by working out Kraus operators and

the POVM corresponding to this. The system (S = mode a) first goes through the

beamsplitter and is interfered, and then interacts with the measurement apparatus

(M = photodetector). Notice that UBS = UBS ⊗ 1M does not act on photodetector

M at all, only on S. So, the whole Kraus operator is

Kn = 〈n|U |0〉M = 〈n|Uγ−pdUBS|0〉M = 〈n|Uγ−pd|0〉M UBS = |0〉 〈n|S UBS. (3.38)

Here Uγ−pd is the unitary describing absorption of the photons by the photodetector,

Eq. (3.28). The label n on the Kraus operator has the same meaning as before:

the measurement outcome is that n electrons are excited in the photodetector. Now,

however, that outcome gives us very different information about S, because of the

action of UBS. Based on the argument in the previous paragraph, one might expect

this Kraus operator to look like some kind of quadrature-basis object. Indeed, one
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can show5 that

U †BS |n〉S ≈ |X
n
θ 〉S , (3.40)

where |Xn
θ 〉 is a quadrature eigenstate X̂θ |Xn

θ 〉 = Xn
θ |Xn

θ 〉, with eigenvalue

Xn
θ =

n− nLO√
nLO

. (3.41)

The Kraus operator is thus

Kn = |0〉 〈Xn
θ |S (3.42)

with corresponding POVM

En = |Xn
θ 〉 〈Xn

θ |S . (3.43)

This means that the total measurement acts as a projective measurement in the θ

quadrature basis. The post-measurement state of the photon is still the vacuum, since

the photons are absorbed by the photodetector.

We can get some intuition for this set of formulas by working through a simple

example. Consider an arbitrary pure state of the mode, which we can express in the

amplitude quadrature basis as

|ψ〉S =

∫ ∞
−∞

dX ψ(X) |X〉S (3.44)

for some wavefunction ψ(X). Tuning the local oscillator to θ = 0 so that we measure

in the amplitude quadrature basis, the probability that we see n electron excitations

in the photodetector is just

P (n) = 〈ψ|En|ψ〉S = |ψ(Xn)|2. (3.45)

For example, consider preparing a near-eigenstate of the amplitude operator, |ψ(X)|2 ≈
δ(X −X0). Then we get a distribution of clicks on the detector

P (n) ≈ δ(Xn −X0) (3.46)

which is a sharply peaked distribution centered at n = nLO +
√
nLOX0. So, when

you look at the number of clicks in the photodiode, you can immediately read off the

value of X0 by just seeing how far the click distribution is from n = nLO. With a

general state, Eq. (3.45) says that the click distribution will essentially reproduce a

discretized image of |ψ(X)|2, shifted and scaled so that X = 0 is centered at n = nLO.

5Here is the proof. Let U = UBS. We have that U†nU = n′. Thus, an eigenstate |n〉 of n

transforms into an eigenstate of n′ with the same eigenvalue:

n′U† |n〉 = U†nUU† |n〉 = nU† |n〉 . (3.39)

Then according to Eq. (3.37), U† |n〉 is approximately an eigenstate of Xθ, with eigenvalue Xθ = Xn
θ .
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Problems

1. Minimal uncertainty in successive measurements. Consider measure-

ments of a particle in one spatial dimension. Assume that you can make posi-

tion measurements described by a Gaussian POVM with uncertainty ∆xM (i.e.,

variance ∆x2
M), and momentum measurements described by a Gaussian POVM

with uncertainty ∆pM . [This problem is based on a paper of Distler and Paban

arXiv:1211.4169]

(a) Consider an initial Gaussian state ψS(x) = Ne−x
2/4∆x2

S . For general ∆xS

and POVM widths, calculate the uncertainty in the outcomes in a position

measurement (∆x)2
meas.

(b) Calculate the post-measurement state after this position measurement, in

particular its width.

(c) Now perform a momentum measurement; calculate the uncertainty in the

outcomes (∆p′)2
meas, again for general values of the widths.

(d) Prove that the product of the two measurement uncertainties satisfies the

bound

(∆x)2
meas(∆p)

2
meas ≥

1

4

(
1 +

√
1 + 4∆x2

M∆p2
M

)2

. (3.47)

(e) Find the initial state ψS(x) that saturates this inequality (i.e., its width).

2. Balanced homodyne detection. Consider the balanced homodyne detector

shown in Fig. 5, right. Here the signal beam a is mixed with a local oscillator

B = |B|eiθ with large occupation |B|2 � 1 as in the unbalanced case. The

difference is that we mix these beams with a 50-50 beamsplitter, and then

measure the differential photocurrent.

(a) Let a,b denote the annihilation operators for the input beams and a′,b′ the

output beams. Work out the expressions for the number operators in the

beams after the beamsplitter, n′a and n′b, in the notation of the main text.

(b) Now approximate b → |B|eiθ as a classical external field. Calculate the

effective number operators n′a and n′b, and their difference n′− = n′a − n′b.
Give n− in terms of Xθ. Make the same approximations as in the main

text.

(c) Suppose we measure n−. Calculate the Kraus operators and POVM ele-

ments for the outcomes n− = −∞, . . . ,∞, in terms of the Xθ basis.
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(d) Put your experimentalist hat on and give a clear technical reason that the

balanced homodyne is superior to an unbalanced one (think about laser

noise).
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4. Tomography of quantum states

In the previous chapters, we studied what it means to do a measurement of a quantum

system. This was taken as something of obvious interest. A measurement is defined

to mean that we observe a system and obtain some outcomes with some probability

distribution. We now begin our study of various tasks that can be accomplished with

this information.

A fundamental task is the following: perform a series of measurements on a system

prepared in an unknown quantum state ρ, and use the outcomes of these measure-

ments to determine ρ. This problem is called “state tomography”: we want to take

an “image” (a tomograph) of the state. This is, in some sense, the most primitive or

fundamental problem in measurement theory. See Fig. 6.

To formalize the problem, consider the following scenario: we have some black-

box system with a button on it, and every time we hit the button, the box spits

out a system S prepared in a state ρ. The state is the same every time we hit the

button, but can in general be a mixed state. For example, the black box could be

Stern-Gerlach apparatus that prepares |0〉 + |1〉 of a spin, or it could be a lightbulb

that prepares ρT the thermal state of some electromagnetic field modes. Our problem

is to design a measurement scheme (i.e., an appatus M , coupling U = USM , and basis

|a〉M , or equivalently a POVM {Ea} on HS) and an algorithm which converts the

measurement data (the distribution of outcomes P (a)) into an estimate ρ̃ of ρ.

We begin with a few examples on simple systems, and then state a fundamentally

important fact: tomography is always possible with local measurements, even on an

arbitrarily large and complex multipartite system! This surprising statement (“axiom

of local tomography”) is given in general, and then demonstrated with a constructive

example on n qubits known as Pauli tomography (an algorithm which is commonly

used in practice). We then discuss some inefficiencies with this protocol and use them

to motivate the study of informationally-complete measurements (IC-POVMs), and

show how these can be used to perform more efficient state reconstructions. Finally we

show how the tomography problem works in continuous variable settings, particularly

homodyne tomography, which historically was the origin for the idea of tomography.

hello

Figure 6: The state tomography problem. Left: ...

43



4.1. Examples on a single degree of freedom

To highlight the basic procedures, we begin by describing concrete tomography algo-

rithms on a single qubit and a single harmonic oscillator. The latter, in particular, will

also give us an excuse to discuss “phase-space” descriptions of quantum oscillators,

such as the Wigner representation.

4.1.1. Pauli tomography on one qubit

Consider an arbitrary state ρ of a single qubit. This is a 2× 2 complex matrix

ρ =

(
ρ00 ρ01

ρ10 ρ11

)
(4.1)

subject to the constraints that it is Hermitian ρ† = ρ and normalized tr ρ = 1. This

means that it has 8− 4− 1 = 3 real parameters. There is a convenient basis for such

matrices, formed by the Pauli matrices σx,y,z and the identity 1, which concretely

means that we can express a general qubit state as

ρ =
1

2

3∑
i=0

Siσi =
1

2

(
1 + S3 S1 − iS2

S1 + iS2 1− S3

)
(4.2)

where

σi = (1, σx, σy, σz), Si = trσiρ. (4.3)

Note that S0 = 1 by definition, so the other three S1,2,3 are a set of three real

numbers which can parametrize the space of states ρ. These matrices in fact define

an orthonormal basis, where we define the inner product between two matrices A,B

as

〈A,B〉 := trA†B (4.4)

in which sense we have

〈σi, σj〉 = 2δij (4.5)

which follows directly from their anticommutation relations. We will make repeated

use of this inner product on matrices in this chapter. The 2 here is the reason for the

1/2 in Eq. (4.2).

Our goal now is to find a series of measurements on the qubit from which we

can reconstruct ρ.6 The reason for introducing the parameterization (4.2) is that

6The description in this section is based on [?], rewritten into a language that we can generalize

to Sec. ??, which in turn is based largely on conversations with Jacob Beckey and the thesis of

Angus Lowe [?].
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this is particularly convenient for this task: we need a series of measurements {Ea}
from which the measured output {P (a)} can be used to infer the numbers S1,2,3. Let

|±x〉 = (|0〉 ± |1〉)/
√

2 be the eigenstates of σx, and then notice that

S1 = trσxρ

= 〈+x|ρ|+ x〉 − 〈−x|ρ| − x〉

= tr [|+x〉 〈+x| ρ]− tr [|−x〉 〈−x| ρ]

= P (+x)− P (−x),

(4.6)

where we introduced the simple, projective, two-outcome POVM with elementsEx,+ =

|+x〉 〈+x|, Ex,− = |−x〉 〈−x|. By identical manipulations one finds that

S2 = P (+y)− P (−y), S3 = P (+z)− P (−z) (4.7)

where the two, two-outcome POVMs here are {Ey,± = |±y〉 〈±y|} and {E±z =

|z,±〉 〈±z|} in terms of the σy,z eigenstates. What these equations show us is that

we can find a series of three POVMs, one each for x, y, z, whose measured outcomes

[the set of six real numbers P (+x), . . . , P (−z)] are sufficient to reconstruct the den-

sity matrix coefficients S1,2,3. For later use, notice that we can write these POVM

elements as

Ei,± =
1± σi

2
, (4.8)

and label the outcomes with ±1 (the eigenvalue of the appropriate σi). This can be

seen by explicit calculation with the σi eigenstates.

The tomography algorithm then proceeds as follows. We prepare a copy of ρ,

then measure it with the POVM Ex,± (i.e., by doing a Stern-Gerlach experiment,

since Ex,± = |±x〉 〈±x| is just a projective measurement). Doing this M times, we

get a list of data points like

xm = (1,−1,−1, 1, . . .), m = 1, . . . ,M (4.9)

from which we can estimate the probabilities

P̃ (+x) =
# +1′s

M
, P̃ (−x) =

# −1′s

M
, (4.10)

and likewise form an estimator for S1:

S̃1 = P̃ (+x)− P̃ (−x) =
1

M

M∑
m=1

xm. (4.11)
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The tildes here represent the fact that these are sampled from a finite number of out-

comes; their average over many measurements must converge to the actual quantum

distribution:

E
[
P̃ (±x)

]
= P (±x) = trEx,±ρ, E

[
S̃x

]
= Sx = trσxρ. (4.12)

However, with a finite number of samplesM , the inferred probabilities have a standard

error. Since the outcomes are binary, it is easy to estimate this error. The expected

variance of S1 satisfies

(∆S1)2 ≤ 1, (4.13)

since xm forms a binary measurement with outcomes ±1. This means that the stan-

dard error

∆S1 =

√
(∆S1)2

M
≤ 1√

M
, (4.14)

the usual result for a binary-outcome measurement. So, the result of these M mea-

surements is an estimate S̃1 for the density matrix coefficient S1, which we know has

an error no worse than 1/
√
M .

Note that this error is not due to imperfections in the measurement, noise, or

anything else “practical”. It is a fundamental quantum mechanical effect that comes

from the fact that the measurement outcomes are random. In the limit M → ∞
these errors vanish and we can perfectly reconstruct S1, but with a finite number

of measurements M , the randomness of quantum mechanical measurement outcomes

only allows us to reconstruct the original density matrix up to some error.

To finish stating the algorithm, we next prepare another copy ρ of the state, but

now measure in the Ey,± basis. From this, we similarly infer an estimate S̃2, with the

same upper bound on its error, by doing another M measurements in this basis. We

then repeat the process for Ez,±, obtaining S̃3. In the end, we obtain an estimator

ρ̃ =
1

2

3∑
i=0

S̃iσi =
1

2

(
1 + S̃3 S̃1 − iS̃2

S̃1 + iS̃2 1− S̃3

)
. (4.15)

Note that we had to do 3M total measurements here, in 3 different bases (i.e., with

3 different POVMs). We will discuss these resource requirements more in the multi-

partite case.

How good is the estimator? By construction, we know that this estimator is unbi-

ased, in the sense that averaging over many measurement outcomes we will converge

to the right answer

E [ρ̃] = ρ. (4.16)
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How fast will it converge? We know each of the Si with precision 1/
√
M , where M

is the number of measurements of each POVM. To characterize the total error in

the density matrix, a number of options are possible. A commonly used definition is

called the sample complexity, where the terminology refers to the number of samples

(N = 3M , in this case) that have to be prepared. To define the sample complexity,

we use our inner product on matrices, Eq. (4.4). This inner product can be used to

define a few useful norms. One is

||A||F :=
√

tr(A†A) (4.17)

where the F refers to Frobenius, who was some math guy. Another useful one is the

so-called 1-norm

||A||1 := tr
√
A†A. (4.18)

As you can imagine, the Frobenius norm is a lot easier to deal with in practice since

you don’t have to find the square root of a matrix, but the 1-norm is more statistically

relevant because it generalizes the usual Kolmogorov notion of distance between two

probability measures. That is, we define the “trace distance” between two states as

d1(ρ, ρ′) := ||ρ− ρ′||1 = tr
√

(ρ− ρ′)†(ρ− ρ′). (4.19)

In practice, it is most useful to calculate distances with the Frobenius norm, and use

this to bound the trace distance, by the inequality

||A||1 ≤
√
d||A||22, (4.20)

for a d× d matrix A. Finally, we can define the sample complexity: it is the number

of total measurements N such that our reconstructed density matrix is sufficiently

close to the true state:

d1(ρ, ρ̃) . ε. (4.21)

The approximation here is so that we can sweep the truly precise definition under the

rug, which says that we demand this inequality strictly hold with probability 1 − δ;
here we will just make order-of-magnitude arguments.

Now let’s consider the sample complexity in the specific tomographic protocol we

just defined, for one qubit. Let εij = ρij − ρ̃ij ∼ 1/
√
M be the error on each density

matrix element after M measurements of each Pauli operator. These are random

numbers of order 1/
√
M but can be positive or negative. We have

||ρ− ρ̃||2F = tr

[(
ε00 ε01

ε10 ε11

)(
ε00 ε01

ε10 ε11

)]
= ε200 + 2ε01ε10 + ε211 .

2

M
. (4.22)
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The estimate here is that the two squared terms always contribute positively like 1/M

while the middle term can be positive or negative. We could write this somewhat

prosaically as d/M , since here d = 2. We will see that this accounting generalizes to

d dimensions when we do an n-qubit version of this, in which case d = 2n. Using the

bound on the trace distance Eq. (4.20), we get

d1(ρ, ρ̃) ≤
√

2||ρ− ρ̃||22 ≈ 2/
√
M. (4.23)

If we want our estimate to be within ε in this distance, this requires

M &
4

ε2
=⇒ Nsamples = 3M &

3× 4

ε2
. (4.24)

We will see later that this generalizes to Nsamples & d4/ε2 in higher dimensions. The

factor of 3 entered because we have to measure with 3 different POVMs (x, y, z bases);

this means that we have to set up the experiment with Nsettings = 3 different configu-

rations. For one qubit, this says that to get an estimate of the density matrix accurate

to 1% requires around Nsamples ≈ 105 measurements. The requirements quickly be-

come very challenging once we have n � 1 qubits, in which case Nsamples ∼ 24n. We

discuss this in detail in Sec. 4.2.1.

4.1.2. Wigner representations; homodyne tomography of an oscillator

Tomography for a continuous-variable system is somewhat different, since dimH =

∞. In this section, we consider tomography of a single harmonic oscillator, using

the homodyne measurements introduced in Sec. 3.3. It turns out that measuring

quadrature variables at different angles is sufficient to reconstruct an oscillator state.

The method we will describe here is a workhorse in many disparate systems, including

optical fields, microwave fields, and the mechanical motion of trapped atoms and ions.

Much like the qubit example of the previous section, it turns out to be very useful

to first pick a representation of an arbitrary oscillator state which is easily tied to

easily implemented measurements. This is analogous to the Pauli decomposition of

Eq. (4.2). Of course, we could expand an arbitrary state ρ in, say, the position or

number bases:

ρ =
∑
n,n′

ρnn′ |n〉 〈n′| =
∫ ∞
−∞

dxdx′ ρ(x, x′) |x〉 〈x′| . (4.25)

However, much like the qubit, there turns out to be a much more convenient repre-

sentation. Consider an arbitrary oscillator state ρ and define the function

W (x, p) =
1

2π

∫ ∞
−∞

dy eipy
〈
x− y

2

∣∣∣ ρ ∣∣∣x+
y

2

〉
. (4.26)

48



This function is known as the Wigner distribution or Wigner function. The kets

in the integral are position-space eigenstates. This integral implements a Radon

transformation, which is a transformation which takes a 2d density function [here, the

position-space density matrix elements ρ(x, x′)], performs the Fourier transformation

over a 1d line in this plane, and outputs a number. This kind of transformation is

the basis for real tomography (e.g., in medical imaging) and is the historical origin of

the term tomography. We will soon show that Eq. (4.26) is invertible, which means

that an arbitrary state ρ can be equivalently described by a Wigner function W .

The Wigner function W (x, p) is very similar to a probability distribution on phase

space. To emphasize the connection, we will mostly label the coordinates (x, p), rather

than (X, Y ) as in Sec. 3.3, but this is just notation. Let’s discuss some basic properties

of this function. Most importantly, it can be used to compute probabilities in the

state ρ. For example, we have∫ ∞
−∞

dpW (x, p) =
1

2π

∫ ∞
−∞

dpdy eipy
〈
x− y

2

∣∣∣ ρ ∣∣∣x+
y

2

〉
=

∫ ∞
−∞

dy δ(y)
〈
x− y

2

∣∣∣ ρ ∣∣∣x+
y

2

〉
= 〈x|ρ|x〉

= P (x),

(4.27)

which shows that P (x) can be calculated as a partial integral over W (x, p), sometimes

called a marginal (in the sense of marginal distribution). A similar but slightly more

involved calculation shows that we can do the same to get P (p), the distribution of

momentum measurement outcomes:∫ ∞
−∞

dxW (x, p) =
1

2π

∫ ∞
−∞

dxdy eipy
〈
x− y

2

∣∣∣ ρ ∣∣∣x+
y

2

〉
=

1

2π

∫ ∞
−∞

dxdydp′dp′′ eipy
〈
x− y

2

∣∣∣ p′〉 〈p′|ρ|p′′〉〈p′′ ∣∣∣x+
y

2

〉
=

1

(2π)2

∫ ∞
−∞

dxdydp′dp′′ ei(p−p
′/2−p′′/2)yeix(p′−p′′) 〈p′|ρ|p′′〉

=
1

2π

∫ ∞
−∞

dp′dp′′ δ(p− p′/2− p′′/2)δ(p′ − p′′) 〈p′|ρ|p′′〉

= 〈p|ρ|p〉

= P (p).

(4.28)

To get the second line we inserted two factors of the identity 1 =
∫
dp |p〉 〈p|, and

to get the third we used 〈x|p〉 = eipx/
√

2π. A very similar calculation shows that, in
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general, the probability distribution of any quadrature Xθ [see Eq. (3.18)] is given by

P (X, θ) := 〈Xθ|ρ|Xθ〉 =

∫ ∞
−∞

dP W (X cos θ − P sin θ,X sin θ + P cos θ). (4.29)

It is this connection to homodyne distributions that will enable a straightforward

tomography algorithm: essentially, we just invert this to get an expression for W as

a function of (measurable) homodyne data.

Historically, Wigner actually derived Eq. (4.26) by demanding that W obeys Eq.

(4.29), as well as a normalization condition:∫ ∞
−∞

dxdpW (x, p) = 1. (4.30)

Since the function W is normalized like a probability distribution, and can be used

to compute the various marginal distributions P (X, θ), it is tempting to think of it

as an actual probability distribution on phase space (x, p). However, it turns out

that W (x, p) can take negative values, which is obviously inconsistent with being a

probability. Thus sometimes one sees terms like “quasiprobability distribution” used

for W . More interesting than the terminology is the physical interpretation of W < 0

(called “Wigner negativity”). We will see here and again later in our discussion of

“non-classical” light in Ch. ?? that Wigner negativity is a hallmark sign of quantum

behavior, meaning behavior that cannot arise in a classical description. Here we will

state this somewhat loosely; in Ch. ?? we will give much more precise, operational

characterizations of this non-classicality.

Before giving the tomography algorithm, let’s study a few examples of Wigner

functions to get some intuition.

• The vacuum |ψ〉 = |0〉, where a |0〉 = 0. An easy calculation shows that W is a

Gaussian W (x, p) ∼ e−x
2/2∆x2

0e−p
2/2∆p2

0 , where ∆x2
0 = 1/2mω and ∆p2

0 = mω/2

are the ground-state oscillator uncertainties. Here W (x, p) > 0 everywhere, so

in this sense the vacuum is “classical”; again, we will have more to say about

this when we discuss non-classical states.

• The canonical thermal state ρ = ρT = e−H/T/Z, with H = ωa†a the Hamil-

tonian and Z = tr e−H/T the partition function. This turns out to be another

Gaussian W (x, p) ∼ e−x
2/2∆x2

T e−p
2/2∆p2

T , except now the uncertainties are the

usual thermal values, like ∆x2
T = coth(ω/2T )/2mω. As T → 0 this reproduces

the vacuum state while as T →∞ the Gaussian becomes a flat distribution, as

one would expect. Again W (x, p) > 0 everywhere.
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• A coherent state |α〉 [see Eq. (3.22)]. Once again the state is a Gaussian,

but now non-trivially centered: W (x, p) ∼ e−(x−xα)2/2∆x2
0e−(p−pα)2/2∆p2

0 . The

uncertainties are the same as those in the vacuum, but the center values xα =

Re α and pα = Im α. Yet again, W (x, p) > 0 everywhere.

• Finally, an example with Wigner negativity: a “cat state” |ψ〉 ∼ |α〉 + |−α〉
made up of the superposition of two coherent states with opposing center val-

ues. If |α| is not too large, then these two states have a non-trivial overlap since

| 〈α| − α〉 |2 = e−|α|
2/2 [see Eq. (3.23)]. In position space, this overlap occurs

around the origin x = 0, and it turns out that this leads to an interference

pattern with Wigner negativity W < 0 in the overlap region. This is consis-

tent with our heuristic statement about Wigner negativity and non-classical

behavior. For a mechanical oscillator for example, this cat state represents the

coherent superposition of two states where the oscillator is localized at disjoint

locations, which is as non-classical an object as one can imagine in a single

degree of freedom.

See Figs. ?? and ?? for some graphical representations.

Finally, let’s describe the homodyne tomography algorithm. Here I will essentially

follow the original prescription due to Risken and Vogel [], which was experimentally

demonstrated in an optical mode almost immediately []. This method is somewhat

naive and has poor convergence properties; the goal here is mostly to give a proof-

of-principle construction that tomography is (approximately) possible even in infinite

dimensions. For a thorough discussion of the changes that need to be made to make

the algorithm really work in practice, see [].

The basic strategy is simple. First, we find the inverse of Eq. (4.26), which means

a formula that gives the density matrix ρ in terms of its Wigner function W (x, p).

Second, we find a formula that gives the Wigner function W (x, p) as a function of

homodyne outcome distributions P (X, θ). Since this last item can be measured ex-

perimentally, we then obtain a formula for the state as a function of measurement out-

comes ρ = ρ[P (X, θ)]. With actual data, one then forms an estimator ρ̃ = ρ̃[P̃ (X, θ)],

as desired.
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The first step, inversion of Eq. (4.26), is easy. Just invert the Fourier transform:∫ ∞
−∞

dpe−ip2∆xW (x, p) =
1

2π

∫ ∞
−∞

dpdy eip(y−2∆x)
〈
x− y

2

∣∣∣ ρ ∣∣∣x+
y

2

〉
= 〈x−∆x|ρ|x+ ∆x〉

= ρ(x−∆x, x+ ∆x).

(4.31)

Since ∆x is just an arbitrary parameter, this gives all the position-space matrix ele-

ments of the Wigner function, i.e., the density matrix itself, as a function of W (x, p).

The second step, determining a formula that gives W = W [P (X, θ)], is slightly

more involved. We define some Fourier transforms as follows:

P (X, θ) =

∫ ∞
−∞

dξ eiξXP̂ (ξ, θ)

W (x, p) =

∫ ∞
−∞

dudv eiux+ivpŴ (x, p).

(4.32)

This second formula can be conveniently rewritten in a non-standard form of polar

coordinates:

W (x, p) =

∫ ∞
−∞

dξ

∫ π

0

dθ |ξ|eiξ(x cos θ+p sin θ)Ŵ (ξ cos θ, ξ sin θ). (4.33)

These are non-standard in the sense that we’re parametrizing the plane in terms of

rays, not radii, so for example the usual point r = 1, θ = 3π/2 is here ξ = −1, θ = π/2.

This parametrization is useful precisely because the Wigner function is a Radon

transformation. Using these definitions and Eq. (4.29), it’s straightforward to show

P̂ and Ŵ are related through the simple formula

P̂ (ξ, θ) = Ŵ (ξ cos θ, ξ sin θ). (4.34)

This expresses the Wigner function W as a function of homodyne data P̂ , which is

what we wanted. Explicitly, inserting (4.34) back into (4.33) and using the inverse

Fourier transform of the first line in (4.32), we obtain

W (x, p) =

∫ ∞
−∞

dξ

∫ π

0

dθ

∫ ∞
−∞

dX |ξ|eiξ(x cos θ+p sin θ−X)P (X, θ). (4.35)

This gives us W = W [P (X, θ)], and then we can insert it into Eq. (4.31) to get

ρ = ρ[P (X, θ)], which gives us a formula for the density matrix in terms of the

homodyne data.

Consider actually doing homodyne tomography based on the inversion formula

Eq. (4.35). This formula says that we need to prepare the state ρ, send it into a
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homodyne detector with some fixed angle θ1, and repeat this many times to form

an estimate of the distribution P (X, θ1). We then need to repeat this process at

another angle θ2, another θ3, and so forth, and in principle we actually need to get

the homodyne distribution at every value of θ. In the language of the Pauli example

of the previous section, this requires Nsettings = ∞ and therefore also Nsamples = ∞.

What this means of course is that one has to discretize the set of angles and perform

some type of splining. A detailed analysis of the errors induced by this is beyond the

scope of this course, but [] contains a thorough treatment.

4.2. Axiom of local tomography

In Sec. 1.3, we gave a precise definition of local measurements on a multipartite

system H = H1 ⊗H2 ⊗ · · · , as a measurement whose POVM elements factor Ea =

Ea1 ⊗ Ea2 ⊗ · · · . Less abstractly, this means a measurement that can be described

by coupling a local measurement apparatus Mi to each system factor Hi through a

single-site unitary Ui, and making a projective measurement on each Mi separately.

Armed with the appropriate definition of a local measurement, we can state an

incredible fact about quantum mechanics:

Theorem (“Axiom of local tomography”): For any state ρ in a

Hilbert space H = H1 ⊗H2 ⊗ · · · , there always exists a set of local mea-

surements {Ea = Ea1 ⊗ Ea2 ⊗ · · · }, {Eb = Eb1 ⊗ Eb2 ⊗ · · · }, . . . (possibly

involving more than one POVM) which give sufficient information to re-

construct ρ to arbitrary accuracy.

This is a theorem in quantum mechanics. The name “axiom of local tomography”

comes from various attempts to derive quantum mechanics by first assuming that

this statement is true in some more general context (for some examples, see []). We

stated this as possibly involving multiple POVMs because that is how tomography

often actually works (e.g., in our examples above), but in fact it is always possible to

do tomography with a single POVM, as we will discuss in Sec. 4.3.7

We are stating the theorem somewhat loosely here, and it can be tightened in

various ways, but the key point is this: not only can you always reconstruct a given

state by measurements, you can always do it with local measurements ! This is very

non-obvious, since quantum states themselves can contain non-local in formation (e.g.,

entanglement). Nevertheless it is true, and important in practice. This fact implies

7(Actually, is it always possible to do LOCAL tomography with one POVM...? –dc)
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in particular that we can detect non-local information like entanglement by doing

local measurements; for example, Bell tests with photons can be done by sending two

entangled photons very far apart from each other and measuring them locally with

photodiodes separated by kilometer-scale distances []. We will discuss this more in

Ch. ??.

Although we could prove this in general, let’s instead prove it constructively in an

example of clear interest: n qubits. This will highlight a number of practical concerns

about efficiency in actually implementing a tomography algorithm.

4.2.1. Example: Pauli tomography of n qubits

Consider now an arbitrary state ρ of n qubits. The total Hilbert space can be factored

H = H1 ⊗H2 ⊗ · · · ⊗Hn, and has dimension d = 2n. We can parametrize a general

state using a simple generalization of Eq. (4.2):

ρ =
1

d

d2∑
i=1

SiΣi, Si := tr Σiρ, (4.36)

where the Σi are called Pauli strings, formed by choosing one Pauli operator (or the

identity) on each qubit, for example

Σ = σx ⊗ 1⊗ σz ⊗ · · · , or Σ = σz ⊗ σz ⊗ σy ⊗ · · · , etc. (4.37)

Since there are four choices of operators on this n-site list, there are 4n = d2 of these.

They form an orthogonal basis, 〈Σi,Σj〉 = dδij, on the space of n-qubit density

matrices.

To perform tomography on this system, we can make a reasonably straightforward

generalization of the single-qubit protocol described in Sec. 4.1.1. We form a set of

two-outcome POVMs, one POVM for each Pauli string Σi, as follows:

Ei,± =
1± Σi

2
. (4.38)

The outcomes are labeled

zi,± = ±1, (4.39)

and correspond to (Under construction! Need to fix local measurement def

in ch 1 –dc)
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4.3. Informationally complete measurements

4.3.1. Example: Random unitaries and SIC-POVMs

Problems

1. Simulating Pauli tomography. In this exercise you will work through the

basic single-qubit Pauli tomography protocol by simulating it on a computer.

This is a great exercise to make sure you understand the basics of what is

random, etc.

(a) Consider some arbitrary density matrix, say ρ = ((1/4, i/4), (−i/4, 3/4))

in the σz basis. Calculate the probabilities P (+x), . . . , P (−z) in this state.

You can do this by hand or on a computer.

(b) Using these probabilities, write a Mathematica (or similar) code that sim-

ulates an experiment in which you perform M measurements in each of

these bases, by generating some data {x1, x2, . . . , xM} and so forth. Start

with something like M = 100.

(c) Check your simulation by plotting a histogram of the +z outcomes against

the expected number of +z outcomes. Does the error make sense at the

order-of-magnitude level?

(d) Using this simulated data, form the estimator ρ̃ for the density matrix.

Compute (using the actual data) the standard errors on the coefficients S̃i.

(e) Now use the estimates in the text above to estimate the number of mea-

surements M you need to do in order to get a total error (measured in

trace distance) of order ε ≈ 1%. Go back in your code and set M to this

value. Run the simulation again, compute the trace distance between the

true state ρ and your estimator ρ̃, and show that the error is of order 1%.
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5. Time evolution and its measurement

In standard quantum mechanics courses time evolution is presented in terms of unitary

evolution, for example through the Schrödinger equation. But this is only a valid

description of reversible systems, such as those which are totally isolated from the

environment. In measurement theory we are always, at minimum, interested in the

evolution of a system S which at some point we will couple to a measuring apparatus.

In general the system will also couple to some unmonitored part of the environment.

Describing the time evolution of S thus requires going beyond the unitary evolution

paradigm.

5.1. Quantum channels, operations, and instruments

Suppose we have a system S with Hilbert space HS, initialized to some state ρ. We

want to describe time evolution as some map

ρ→ ρ′ = L[ρ]. (5.1)

What are the most bare-bones properties that this map L needs to satisfy in order

for quantum mechanics to make sense, in its normal interpretation? There are a few

very simple rules we can state, which essentially are just the demands that ρ′ is a

valid density matrix:

1. Conservation of total probability: Any density matrix has to satisfy tr ρ =

1 so that
∑

a P (a) = 1 for any measurement {Ea}. Thus we need trL[ρ] = 1

for density matrices, or more generally preservation of the trace trL[O] = trO

for any operator.

2. Hermiticity: The density matrix has to be Hermitian ρ = ρ† and positive

ρ ≥ 0. The first condition means that the state is diagonalizable and the sec-

ond means it has positive eigenvalues, which together ensure that ρ can be

interpreted as an ensemble of pure states ρ =
∑

i pi |ψi〉 〈ψi| with {pi} a prob-

ability distribution. Thus we require L[O]† = L[O] for any Hermitian operator

O† = O, as well as preservation of positivity:

3. Positivity: L[O] ≥ 0 for any positive operator O ≥ 0.

4. Linearity: Suppose we know the action of L on some particular states, say ρ′ψ =

L[|ψ〉 〈ψ|] and ρ′φ = L[|φ〉 〈φ|]. By the usual rules of quantum mechanics, we can
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form an initial state that’s a statistical mixture, say ρ = pψ |ψ〉 〈ψ|+ pφ |φ〉 〈φ|,
which represents the scenario where we think we prepared |ψ〉 with probability

pψ and similarly for |φ〉. Then with probability pψ, the final state should be ρ′ψ,

and similarly for ρ′φ. That is, we should have L[paρa + pbρb] = paL[ρa] + pbL[ρb]

for any two states ρa,b. Generalizing, we will require that L is linear in the

usual sense that L[aOa + bOb] = aL[Oa] + bL[Ob] for any operators and complex

coefficients.

In addition to these, we need a rule that says that if HS is part of some larger

total Hilbert space H = HS ⊗Hother, that we can “trivially” time evolve the rest of

the total state, and still get a valid total density matrix. Here Hother can represent

the measurement apparatus, environment, etc. Let the total initial state be ρ⊗ρother,

then the appropriate rule is

3′. Complete positivity: Consider the channel L ⊗ 1 acting on HS ⊗Hother as

the original channel L on HS and the trivial map 1 on Hother. Then we require

that (L⊗1)[ρtotal] ≥ 0 for any global state ρtotal on the whole H = HS⊗Hother,

i.e., the total final state is still a positive state and thus a valid density matrix,

for all choices of Hother and ρother.

This last condition obviously implies that the channel L itself is a positive map by

just taking Hother to be empty, so it replaces the original item 3. Complete positivity is

however strictly stronger: there are linear, trace-preserving, positive maps which are

not completely positive. A famous example is the map sending a state to its transpose

LT [ρ] = ρT , which is worth writing out because it also explains the notation L ⊗ I.

On a qubit, the transpose map LT acts as

LT [|i〉 〈j|] = |j〉 〈i| , i, j = 0, 1. (5.2)

Consider now appending another qubit as Hother, and sending in the maximally en-

tangled state |ψ〉 = (|00〉+ |11〉)/
√

2. The total channel LT ⊗ 1 acts as

(LT ⊗1)[|ψ〉 〈ψ|] = |00〉 〈00|+ |10〉 〈01|+ |01〉 〈10|+ |11〉 〈11| =


1 0 0 0

0 0 1 0

0 1 0 0

0 0 0 1

 , (5.3)

which is just a SWAP gate. One can check easily that this has eigenvalues−1,+1,+1,+1.

Thus LT ⊗ 1 is not a positive map, and so LT is not completely positive.
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The set of linear maps ρ → ρ′ = L[ρ] satisfying the above rules are called CPTP

maps (completely positive, trace preserving), and sometimes are called quantum chan-

nels. We are going to take this as a basic model of time evolution of a quantum system

HS. These rules are often presented as a set of “obvious truths”, but it should be

emphasized that these are assumptions we are making about the way time evolution

works and what the density matrix actually means. One can imagine conspiratorial

dynamics which actually violates the above, although this almost always forces a lot

of mental gymnastics about the ensuing interpretation. For example, violations of

the assumption of linearity have long been studied: [1, 2].

Besides conspiracies, there are some simple settings in which we need to further

generalize the above picture. One is if the dimension of HS changes in time; this is easy

to write down and still covered by a CPTP map/channel. A more interesting case is

if we are making a measuerment and learn the outcome, in which case linearity is lost

as we will re-emphasize below; this forms a set of maps called “quantum operations”

(or sometimes “quantum instruments”).

One can additionally demand that time evolution can be undone: this would be

the demand that for any channel L, there has to be some inverse L−1 such that

L−1[L[ρ]] = ρ for any initial state ρ. If L−1 exists mathematically, we say that the

channel is invertible: given knowledge of the final state ρ′, we can retrodict the initial

state ρ = L−1[ρ′]. For this inverse to be a physical operation that we can implement

with time evolution, we also have to demand that L−1 itself is a channel. This is

the usual assumption made (implicitly or explicitly) in standard quantum mechanics

books. Clearly, under unitary evolution,

L[ρ] = UρU † =⇒ L−1[ρ′] = U †ρ′U, (5.4)

the inverse map exists, and is a channel. We can just “run time backwards”. What

about the converse? It turns out that an inverse channel L̃ exists only if the channel

L is unitary

L−1 exists and is a channel =⇒ L[ρ] = UρU †. (5.5)

For a proof, see Preskill Ch. 3. Thus, time evolution is reversible if and only if it

is described by a unitary map. So what more general channels L describe is non-

reversible evolution, such as the evolution of a subsystem coupled to other stuff.

This interpretation can be made much more clear by a set of simple formal results.

The first is called the Kraus representation, which states that any channel can be

58



expressed as

ρ→ ρ′ = L[ρ] =
∑
a

KaρK
†
a, (5.6)

for some set of operators satisfying the completeness relation∑
a

K†aKa = 1S (5.7)

This completeness relation should be familiar: it is the same thing we demanded for

the Kraus operators used to described the measurement of a system S by coupling it

to an apparatus M and measuring the apparatus in the basis {|a〉M} [see Eq. (1.15)].

This is no accident! Using the same formal result as we did there, Stinespring’s

dilation theorem, we can always find some other system HB, coupling unitary USB

acting on HS ⊗ HB, reference state |0〉B and basis {|a〉B}, such that these Kraus

operators can be written

Ka = 〈a|USB|0〉B . (5.8)

As in the case of measurements, these are operators on HS only. The notation B here

stands for “bath”, rather than using M for “measurement apparatus”. The reason

is because of the sum over outcomes
∑

a in Eq. (5.6). Recall that in the case of

a measurement, once we know the outcome a, the apparatus is projected into |a〉M
while the system is updated according to the usual rule,

ρ→ KaρK
†
a

P (a)
, (after measurement given outcome a). (5.9)

What Eq. (5.6) says is that we update ρ by summing over all the possible outcomes

of such a measurement. Notice that Eq. (5.9) is non-linear, because P (a) = trEaρ

depends on ρ. Thus measurement itself is a quantum “operation”, rather than a

channel. In contrast, the P (a) factors are not needed in Eq. (5.6), since ρ′ is auto-

matically normalized due to the completeness relation
∑

aK
†
aKa = 1. So Eq. (5.6) is

linear, as a channel should be.

This picture is very intuitive. What it says is that a general time evolution de-

scribed by a channel can always be interpreted as time evolution of a non-isolated

system S, which is coupled to an unmonitored bath B. See Fig. 5.1. The “unmoni-

tored” part is crucial: if we are measuring the bath state, then we go back to the usual

story of measurements, in which case the S state is instead updated conditioned on

our known outcomes as in Eq. (5.9). We will give some more detailed interpretation

of this in terms of local and non-local information when we discuss decoherence in

the next section.
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S : ρ L
=

ρ

USB
|0〉B trB

Figure 7: Decomposition of an arbitrary channel into a system-bath interaction.

Example: amplitude damping channel. Way back in our study of Schrödinger’s

cat in Ch. 1, we introduced a simple model of the decay of an unstable radioisotope.

There we modeled the atom as having an unstable excited state |e〉 which can decay

into a stable ground state |g〉, with some probability 1− p, where p = p(t) ∼ e−t/t1/2 .

This system has a very obvious bath: the other fields of nature which get excited

when the decay occurs. For example, an actual 238U atom usually undergoes α decay,

in which it emits a helium nucleus. More commonly in quantum optics classes one

uses an example of spontaneous photoemission from the decay of an electronic atomic

state. In any case, the basic point is that we have dynamics that can be modeled as

USB |g〉S |0〉B = |g〉S |0〉B
USB |e〉S |0〉B =

√
p |g〉S |1〉B +

√
1− p |e〉S |0〉B .

(5.10)

Here, |1〉B represents whatever excited state of the bath occurs after the decay (e.g.,

the state of one photon after spontaneous emission). The only important part is that

〈0|1〉B = 0 so the bath has total knowledge of whether the decay occurred or not.

However, suppose that we can’t monitor the bath. What is the channel describing

the time evolution we predict for S alone? The Kraus operators [Eq. (5.8)] are

K0 = 〈0|USB|0〉B = |g〉 〈g|S +
√

1− p |e〉 〈e|S
K1 = 〈1|USB|0〉B =

√
p |g〉 〈e|S .

(5.11)

These are complete
∑

a=0,1K
†
aKa = 1S. The Kraus representation [Eq. (5.6)] for the

channel is therefore

ρ→ ρ′ = L[ρ] = [〈g|ρ|g〉+ p 〈e|ρ|e〉] |g〉 〈g|+ (1− p) 〈e|ρ|e〉 |e〉 〈e|

+
√

1− p [〈g|ρ|e〉 |g〉 〈e|+ 〈e|ρ|g〉 |e〉 〈g|] .
(5.12)

Each term has a simple interpretation. The first says that, with probability P =

Pin(g)+p×Pin(e), the atom ends up in the ground state, either because it started there

or because it decayed from the excited state. The second says that with probability
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(1 − p) × Pin(e), the atom was excited but does not decay. The final terms, on the

second line, lead to decay of the off-diagonal density matrix elements, a phenomenon

called dephasing (or sometimes decoherence) that we will study in more detail in the

next section. It is nice to check that tr ρ′ = 1 as it should be.

Notice that there is no term proportional to |e〉 〈g| in Eq. (5.11), which would

represent the atom being excited from its ground state. This is because the bath is

initially in the vacuum, so there is no photon for the atom to absorb. However, if we

instead considered the bath to be initially in some other state like the thermal state

(e.g., an atom surrounded by a thermal bath of photons), then there will be a |e〉 〈g|
term. We will see this later in a detailed model of an atom in cavity with a hot bath.

It should be physically obvious that this channel is non-reversible. For example, we

can look at the purity of the density matrix. Consider a pure initial state ρ = |e〉 〈e|.
Then the purity evolves as

tr
(
ρ2
)

= 1→ tr
(
L[ρ]2

)
= tr

(
[(1− p) |e〉 〈e|+ p |g〉 〈g|]2

)
= 1−2p(1−p) < 1. (5.13)

So for any decay probability 0 < p < 1, this channel evolves an initial pure state into

a mixed state. In an actual decay, this is not quite the full story: since p(t) → 1 as

t→∞, the final state is always the pure state |g〉, and indeed the purity returns to

1. So, viewed as a time dependent process, starting from the pure state |e〉 〈e|, we

first transition into a mixed state with, and then ultimately end up in a pure state

again!

5.2. Decoherence and dephasing

Decoherence and dephasing are phenomena in which the quantum coherence of a sys-

tem is lost. At the level of an individual system, they are indistinguishable phenom-

ena, although the term decoherence typically carries some further meaning regarding

irreversible couplings to an external system. We will discuss this in detail below.

First, let’s talk about the actual observable signature of these processes.

Consider a qubit prepared in the general pure state

|ψ〉 = a |+z〉+ b |−z〉 , (5.14)

where as usual these states are the σz basis elements. In this state, the probability of

measuring the spin up or down on the z-axis is of course P (+z) = |a|2, P (−z) = |b|2.

In a non-commuting basis, the answer is more interesting. The probability to measure,
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say, the spin in +x is

P (+x) = | 〈+x|ψ〉 |2 =
1

2
[1 + (a∗b+ ab∗)] . (5.15)

The terms ∼ a∗b represent interference of the |±z〉 states: if a = 0 or b = 0 (i.e., if we

had prepared either |+z〉 or |−z〉), these terms go away and we get simply P (+x) =

1/2. This interference is analogous to the double-slit experiment, where we prepare a

free particle in a superposition of two spherical waves |ψ〉 = (|ψL〉 + |ψR〉)/
√

2. The

pattern of hits observed on the screen is given by the position distribution

P (x) = | 〈x|ψ〉 |2 =
1

2

[
|ψL(x)|2 + |ψR(x)|2 + ψ∗L(x)ψR(x) + ψL(x)ψ∗R(x)

]
. (5.16)

The first two terms are just simple peaks at either x = xL or x = xR, while the

last two terms show interference, ψLψR ∼ exp(−ik(x − [xL − xR])) where k is the

wavevector of the particle. These interference terms, famously, lead to a sinusoidal

modulation of the hits on the screen.

The pure qubit state in Eq. (5.14) has density matrix

ρpure =

(
|a|2 a∗b

ab∗ |b|2

)
. (5.17)

Consider instead the mixed state

ρmixed =

(
|a|2 0

0 |b|2

)
, (5.18)

where we set the off-diagonal matrix elements to zero. The probabilities of measuring

the spin in ±z are the same in either of these states, P (+z) = |a|2, P (−z) = |b|2.

However, in the mixed state, the probability of measuring +x is

P (+x) = tr [|+x〉 〈+x| ρmixed] = tr

[
1

2

(
1 1

1 1

)(
|a|2 0

0 |b|2

)]

=
1

2
tr

[(
|a|2 |b|2

|a|2 |b|2

)]
=

1

2

(
|a|2 + |b|2

)
=

1

2
.

(5.19)

One can easily find a similar result for P (−x) and P (±y). There are no interference

terms, as expected. Indeed, in a general qubit state

ρ =

(
ρ00 ρ01

ρ∗01 ρ11

)
(5.20)
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one finds

P (+x) =
1

2
(1 + ρ01 + ρ∗01) , (5.21)

so the interference effects (in x measurements) are given precisely by the off-diagonal

terms (in the z basis representation). For this reason people sometimes refer to the

off-diagonal density matrix elements as “coherences”: they quantify the level at which

the state is coherently superposed.

Decoherence and dephasing are processes by which an initial state with some

degree of coherence [for example, a pure state such as (5.17)] evolves dynamically

into a state with less coherence [for example, the mixed state (5.18)], thus destroying

observable interference effects. In this simple single-qubit example, we can model this

process by the channel:

ρ→ ρ′ = L[ρ] =

(
ρ00 (1− p)ρ01

(1− p)ρ∗10 ρ11

)
. (5.22)

In particular, for large p, this channel produces a totally diagonal density matrix,

with no interference terms, just a statistical mixture of |0〉 = |+z〉 and |1〉 = |−z〉.
However, the probabilities of the ±z states remain fixed. So this channel represents

“pure” dephasing/decoherence (and is thus often called “the” dephasing channel).

What kind of system-bath interaction produces this channel? Just as in the case

of pure measurements, a given channel does not admit a unique Kraus representation,

but rather a unitary family of them. However, we can easily just guess a form for

a particular Kraus representation of this channel. The physics here is that the bath

should be measuring whether the system is in |0〉 or |1〉, but in such a way that this

measurement does not actually cause transitions between these states. For example,

consider a bath made of a three-level system |0, 1, 2〉B, and

USB |0〉S |0〉B =
√

1− p |0〉S |0〉B +
√

1− p |0〉S |1〉B
USB |1〉S |0〉B =

√
1− p |1〉S |0〉B +

√
p |0〉S |2〉B .

(5.23)

The idea is that the bath starts in |0〉B, and then with some probability p, it interacts

non-trivially with the system. We can think of it like a scattering event, where with

probability p the bath particle scatters and with probability 1−p the bath particle just

flies past. In the scattering event, if the system is in |0〉S, then the bath transitions

|0〉B → |1〉B, while if the system is in |0〉B, the bath transitions |0〉B → |2〉B, so the

final bath state knows the qubit state (if the interaction occurs), but in either case
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the system state is left alone. There are three Kraus operators,

K0 = 〈0|USB|0〉B =
√

1− p 1S

K1 = 〈1|USB|0〉B =
√
p |0〉 〈0|S

K2 = 〈2|USB|0〉B =
√
p |1〉 〈1|S .

(5.24)

This gives the Kraus representation of the channel

ρ→ ρ′ = L[ρ]

= (1− p)ρ+ p 〈0|ρ|0〉 |0〉 〈0|+ p 〈1|ρ|1〉 |1〉 〈1|

=

(
ρ00 (1− p)ρ01

(1− p)ρ∗01 ρ11

)
,

(5.25)

which is exactly the dephasing channel of Eq. (5.22).

This system-bath model gives a very intuitive picture of how decoherence works,

and more generally illustrates the physics of general lossy channels. The system and

bath evolve together unitarily,

ρtotal = ρS ⊗ |0〉 〈0|B → rho′total = USB (ρS ⊗ |0〉 〈0|B)U †SB, (5.26)

which in general is some entangled joint state of the system and bath. Since the time

evolution is unitary, the total entropy is conserved,8 and the amount of information

in the universe is conserved. No information is lost, rather, the system starts to share

non-local information with the bath. Now, the issue is, if we’re an experimentalist

who can’t measure the bath, what state should we use to make predictions about the

outcomes on S alone? The answer is the reduced density matrix,9

ρ′S = trB ρ
′
total =

∑
a

〈a|USB (ρS ⊗ |0〉 〈0|B)U †SB|0〉B =
∑
a

KaρSK
†
a. (5.27)

But this is precisely the form of a general channel. So this picture of decoherence

of a system S is simply the idea that S becomes entangled with some bath, thus

sharing non-local quantum information, and so observations made solely on S will

lose interference effects.

8Let U be a unitary and ρ a general state of some Hilbert space. Then tr
(
UρU†

)n
=

tr
(
UρU†UρU† · · ·UρU†

)
= tr ρn, using cyclicity of the trace. So every Renyi entropy is preserved

and thus so is the von Neumann entropy.
9For any pair of systems HA ⊗HB , let ρA = trB ρtotal. Then for any observable OA, we have

〈OA〉 = trA(OAρA) = trtotal(OA ⊗ 1Bρtotal). This is the formal statement that the reduced density

matrix contains all the information about measurements made only on A.
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Figure 8: Markov approximation with an infinite series of different bath objects.

Sometimes decoherence is confused with wavefunction collapse. Let’s clear this

up quickly. Consider an initial state |ψ〉 = a |0〉 + b |1〉 of a qubit. In the dephasing

channel example, say in the strongest case p = 1, the channel acts as

|ψ〉 〈ψ| → ρ′ =

(
|a|2 0

0 |b|2

)
, (5.28)

which is a classical statistical ensemble representing a qubit which we think is prepared

in |0〉 with probability |a|2 and prepared in |1〉 with probability |b|2. So what the

environment has done here is to take the initial pure state and reduce its coherence

to the point that we have a simple classical ensemble. Wavefunction collapse, on

the other hand, would be the case in which we (not the environment!) projectively

measure the qubit, and we know the outcome is either |0〉 or |1〉. Once we have the

outcome, and assuming the measurement was non-destructive in the sense of Ch. 1,

then we know with complete certainty which pure state the qubit is in, say

|ψ〉 〈ψ| → ρ′ = |0〉 〈0| =

(
1 0

0 0

)
, (5.29)

if we got the outcome |0〉. The predictions we would make using the state (5.28)

and (5.29) are very different. For example, if we projectively measure the qubit in

the computational basis, (5.28) predicts that we will get either |0〉 or |1〉 with some

probabilities, whereas (5.29) says that we get |0〉 every time. So decoherence is very

different than wavefunction collapse.

This discussion of decoherence and dephasing has been in an extremely simplified

setting, where a single bath object interacts with the system once, causing some

amount of decoherence. In reality, the much more common scenario is instead that we
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Figure 9: Markov approximation with a bath resetting at each timestep. At the

level of the channel acting on S, this is equivalent to the circuit of Fig. 5.2.

have a large bath comprised of many degrees of freedom, and the repeated interactions

cause decoherence. The large bath is critical because it make the whole process

fundamentally irreversible: once the system information is shared with the bath, it

is usually unlikely to leak back into the system, although this depends somewhat on

how the bath evolution itself works. We will make this idea very precise in the next

section, but first let’s motivate a basic concept, the Markov approximation.

Consider now a qubit S which interacts with some large numberN of bath particles

B1, . . . , BN , each through the dephasing interaction of Eq. (5.23). We can imagine

these happening sequentially, one per timestep ∆t = t/N during some total time t.

See Fig. 5.2. This sequence of interactions causes the system state to evolve as

ρ→ L[ρS]→ L[L[ρS]]→ · · · → LN [ρS], (5.30)

or rather

ρ→ ρ′ =

(
ρ00 (1− p)Nρ01

e−Γtρ∗10 ρ11

)
. (5.31)

At each timestep the probability that the associated Bi scatters is p, so we can write

p = Γ∆t = Γt/N where Γ is the collision rate (in units of events/time, e.g., Hz). So

then in the limit of a large bath N → ∞ we have (1 − p)N = (1 − Γt/N)N → e−Γt

and the whole channel acts as

ρ→ ρ′ =

(
ρ00 e−Γtρ01

e−Γtρ∗10 ρ11

)
. (5.32)

After times t & 1/Γ, the off-diagonal matrix elements are quickly decaying to zero,

and the state is decohered.

In this N -body bath example, we assumed that at each timestep a new bath

particle interacts with the system. At the level of the evolution of the system state,

we could equivalently have described this by having just a single bath particle B.

The idea in this second picture would be that at each timestep, B is prepared in
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Global Local

Closed system ρ(t) = Uρ(0)U † ρ̇(t) = i[H, ρ(t)]

Open system ρ(t) =
∑

aKaρ(0)K†a
ρ̇(t) = i[H, ρ(t)] +

∑
a Laρ(t)L†a

− 1
2
L†aLaρ(t)− 1

2
ρ(t)L†aLa

Table 3: Time evolution in its “global” and “local” forms in quantum mechanics. In

the right column, we have assumed that the dynamics are stationary : the Hamiltonian

H and Lindblad operators La are time-independent. One can make this table more

general by including time dependence in these terms, as discussed in the text.

|0〉B, interacts with S, is measured, and then the outcome of this measurement is

“lost”. We then proceed to the next timstep, where B’s state is “reset” to |0〉B, and

so forth. See Fig. 5.2. This is purely a mathematical equivalence here; using this

second picture is a simple example of a Markov approximation, which says that the

bath state can be viewed as resetting to some initial state with some characteristic

timescale. We will study this idea in great detail in the next two sections.

5.3. Local time evolution

In the previous sections, we described the general rules for evolution of a system from

t1 to t2, separated by a finite interval. This generalizes the usual finite-time evolution

operator U(t) in a closed system. In this section, we turn to local, differential time

evolution: the generalization of the Schrödinger equation i∂ψ = Hψ or Heisenberg

equation i∂tρ = [H, ρ]. The general situation is summarized in Table 3.

By local time evolution, we mean that ρ̇(t) at time t depends only on the state

at the same time ρ(t), as opposed to something like an integral over all the past

values. Integrating the local evolution laws shown here over time, one obtains global

evolution rules like those in the left column. However, in general, one can imagine

global evolution of the form shown in the left column which does not arise from a

local time evolution law.

The equation in the bottom-right corner is known as the Lindblad equation. Next,

in Sec. 5.3.1, we derive the Lindblad equation and study how it can be used to model

processes like the dephasing channels studied in the previous sections. We then turn in

Sec. 5.3.2 to some more general, non-stationary and/or non-Markovian noise models.
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5.3.1. The Lindblad equation

Consider a channel ρ(t) = L[ρ(0)] = E∆t[E∆t[· · ·E∆t[ρ(0)] · · · ]] that acts as a sequence

of the same “differential” channel E∆t applied repeatedly. From our discussion in Sec.

5.1, we know that we can write E∆t as unitary evolution of the system with a bath,

with the bath state then lost and reset in each time step. Equivalently, we can view

this as an infinite set of copies of the same bath evolving unitarily forever. See Fig.

??. In either case, this channel represents a Markov process: at each time step ∆t, a

new random process acts on the system state. Here we have also taken this process

to be stationary, i.e., the channel E∆t is the same at each time step, but we could

generalize this further, as discussed below.

In this stationary Markov process, we can derive a simple and important differen-

tial equation governing the system state’s evolution known as the Lindblad equation.

In one time step the system evolves as

ρ(t+ ∆t) = E∆t[ρ(t)] =
∑
a

Kaρ(t)K†a (5.33)

by our general results on channels above. The left hand side can be expanded as

ρ(t+ ∆t) = ρ(t) +O(∆t), and similarly we can expand the Krauss operators Ka. We

will be interested in the O(∆t) terms in order to get a differential equation, which

means that Ka will start at O(∆t1/2). We can always unitarily rotate the Krauss

operators to put the O(∆t0) term uniquely into it, in which case we have

K0 = 1 + (−iH + L̃)∆t

Ka≥1 = La
√

∆t.
(5.34)

Here, the H and L̃ are Hermitian, so all we did was write the O(∆t) term in terms of

its real and imaginary parts; we will see shortly that H has the interpretation of being

a Hamiltonian. In the other Krauss operators, the La are not necessarily Hermitian;

these are called Lindblad or “jump” operators for reasons which will become clear.

We can eliminate L̃ by appealing to the completeness relations. To order ∆t, these

read

1 =
∑
a≥0

K†aKa = 1 + 2L̃∆t+
∑
a≥1

L†aLa∆t (5.35)

which implies

L̃ =
1

2

∑
a≥1

L†aLa. (5.36)

This is like the optical theorem in scattering, which gives a relation between the

forward-scattered wave and the total cross section. Both are consequences of unitarity,
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where here we mean unitary evolution on the total system plus bath state. In any

case, plugging the expansion Eq. (5.34) back into Eq. (5.33), using Eq. (5.36), and

taking the continuum limit ∆t→ 0, we obtain

∂tρ(t) = −i[H, ρ(t)] +
∑
a≥1

Laρ(t)L†a −
1

2
L†aLaρ(t)− 1

2
ρ(t)L†aLa. (5.37)

This is, as advertised, the Lindblad equation.

Let’s see an example: the dephasing channel, in the limit that it acts continuously

in time. The global version of this channel was given in Eq. (5.22). Suppose the

bath acts in this manner at each timestep ∆t, where the probability p = Γ∆t now

represents the probability of the bath particle “scattering” in a given timestep, so Γ

is a rate (collisions per time). We can expand the Kraus operators of Eq. (5.24) in

the Γ∆t� 1 limit:

K0 = 1− Γ∆t

2

K1 =
√

Γ∆t |0〉 〈0|

K2 =
√

Γ∆t |1〉 〈1| .

(5.38)

The differential evolution of the system state is

ρ(t+ ∆t) = E∆t[ρ(t)] =
∑
a≥0

Kaρ(t)K†a

= ρ(t)− Γ∆tρ(t) + O(∆t2) + Γ∆t |0〉 〈0|ρ|0〉 〈0|+ Γ∆t |1〉 〈1|ρ|1〉 〈1| .
(5.39)

From Eq. (5.38) we can identify the jump operators

L1 =
√

Γ |0〉 〈0| , L2 =
√

Γ |1〉 〈1| (5.40)

and from the first term in Eq. (5.39), we can read off L̃ = Γ∆t/2 = Γ∆t/2(|0〉 〈0| +
|1〉 〈1|). Clearly these satisfy the relation 2L̃ = L†1L1 +L†2L2 [Eq. (5.36)]. Using these

observations, one can re-write Eq. (5.39) as, to order ∆t,

ρ(t+ ∆t)− ρ(t) = −L̃ρ(t)− ρL̃+ L1ρL
†
1 + L2ρL

†
2

=
∑
a=1,2

LaρL
†
a −

1

2
L†aLaρ−

1

2
ρL†aLa,

(5.41)

which in the limit ∆t → 0 is just Eq. (5.3.1), the Lindblad equation with a trivial

Hamiltonian H = 0.
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We can make the connection to our dephasing model even more clear by solving

Eq. (5.41). This is an equation for the whole density matrix. It is easy to work out

the equations for the individual components. The 00 diagonal element obeys

ρ̇00 = 〈0|ρ̇|0〉

= 〈0|

(∑
a=1,2

LaρL
†
a −

1

2
L†aLaρ−

1

2
ρL†aLa

)
|0〉

= Γ

(
ρ00 −

1

2
ρ00 −

1

2
ρ00

)
= 0,

(5.42)

i.e., it is a constant ρ00(t) = ρ00(0). The 11 component is similarly a constant. The

off-diagonal elements, however, obey

ρ̇01 = 〈0|ρ̇|1〉

= 〈0|

(∑
a=1,2

LaρL
†
a −

1

2
L†aLaρ−

1

2
ρL†aLa

)
|1〉

= Γ

(
0− 1

2
ρ01 −

1

2
ρ01

)
= −Γρ01,

(5.43)

that is, they decay ρ01(t) = e−Γtρ01(0). Thus the whole density matrix evolves as

ρ(t) =

(
ρ00(0) e−Γtρ01(0)

e−Γtρ∗01(0) ρ11(0)

)
(5.44)

which is exactly what we found in Eq. (5.32), where we had the dephasing channel

act repeatedly. This is no surprise since that is precisely what this Lindblad equation

models.

One could say many more things about the Lindblad equation, but the above

captures the essence of what we need in measurement theory. In particular, we could

study other examples of the Lindblad equation, for example those which couple the

various density matrix elements amongst themselves. Instead, we are going to now

study more complex and detailed dynamical models of pure dephasing/decoherence,

which will generalize this picture further, and show us how to derive models like these

from detailed microscopic system-bath interactions.
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5.3.2. Markovian and non-Markovian noise

So far, our discussion of local time evolution has focused on stationary, Markovian

models, where a single channel E∆t acts repeatedly on the system. Let’s now step

outside this picture and instead look at a much more general and realistic scenario,

in which the bath has arbitrary time dependence and the dynamics can be non-

Markovian. We will analyze this in a specific qubit model so that we can connect it

to our dephasing models above.

Consider a qubit (say, a spin or two-level atom) which couples to an external

magnetic field B = B(t) via

H(t) =
1

2
(ω + µB(t))σz. (5.45)

Here µ is a coupling constant (e.g., the magnetic moment), and ω is the bare frequency

of the qubit; the 1/2 is for convenience in what follows. In a real lab, the external

field B(t) is random and varies in time; we are thinking of it as, for example, random

stray fields while any known DC fields are encoded in ω. This model is assuming that

B = Bz is the dominant source of fluctuations; a more realistic coupling would be to

consider

Vint = µσ ·B(t) (5.46)

but this is much more complicated to analyze. We will do so in Sec. 5.4.

In this section, we will treat B(t) as a classical random field; in the next section,

we will quantize it. In the classical picture, let’s take B to obey stationary Gaussian

statistics with zero mean:

〈B(t)〉noise = 0

〈B(t)B(t′)〉noise = K(t− t′).
(5.47)

The second equation is what we mean by stationary: it says that the noise is correlated

over time, but the amount of correlation depends only on the relative time. The

function K(t− t′) is called the covariance of the Gaussian distribution. The average

here is a classical average,

〈· · ·〉noise =

∫
DB P [B(t)](· · · ) (5.48)

where the integral is over all possible time-dependent configurations B(t) and P [B(t)]

is the probability distribution of these configurations. We will not need this formalism

in any detail; this equation just highlights the idea that we are doing ordinary classical

probability theory in the noise field B(t).
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We will need the noise statistics in a different form, one which we will encounter

repeatedly in the rest of this course: the power spectrum. Define

SBB(ν) =

∫ ∞
−∞

dt

2π
e−iνt 〈B(t)B(0)〉noise . (5.49)

This function, the noise power spectral density (PSD), is a function of frequency ν,

with dimensions of B2/ν, e.g., Tesla2/Hz. What it represents is the noise power. The

utility of this function will become clear shortly. We can re-organize this informa-

tion again to understand what the stationary noise assumption means in frequency

domain. Consider the B correlation function:

〈B(ν)B(ν ′)〉noise =

∫ ∞
−∞

dtdt′

(2π)2
e−iνte−iν

′t′ 〈B(t)B(t′)〉noise

=

∫ ∞
−∞

dtdt′

(2π)2
e−iνte−iν

′t′
∫ ∞
−∞

dωeiω(t−t′)SBB(ω)

= SBB(ν)δ(ν + ν ′).

(5.50)

In other words, the noise is uncorrelated other than ν ↔ −ν.

Armed with our noise statistics, let’s compute the evolution of a qubit evolving

under Eq. (5.45). This particular model is special because we can actually derive the

exact time evolution for a fixed realization of the noise, meaning some fixed function

B(t). The equation of motion is of course

ρ̇ = i[H(t), ρ] (5.51)

which has solution

ρ(t) = U(t)ρ(0)U †(t) (5.52)

with

U(t) = T exp

{
−i
∫ t

0

dt′H(t′)

}
= exp

{
− i

2

∫ t

0

dt′ (ω + µB(t′))σz

}
= exp

{
− i

2
(ωt+ Φ(t))σz

}
.

(5.53)

The first equation is the general solution of Eq. (5.51) with a time-dependent Hamil-

tonian; the T means time ordered exponential. To get to the second line we used

the fact that [H(t), H(t′)] = 0, which makes the time ordering trivial and turns the

answer into a simple exponential. The final line has an accumulated phase factor

Φ(t) = µ

∫ t

0

dt′B(t′). (5.54)
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Given a specific B(t), this is a real number. With B(t) random, Φ(t) itself becomes

a random variable, with statistics determined by Eq. (5.47).

Since U(t) in Eq. (5.52) only involves the σz operator in the exponential, we can

easily work out the evolution of the density matrix components in the σz basis. The

diagonal elements evolve trivially:

ρ00(t) = e−i(ωt+Φ(t))/2ρ00(0)e+i(ωt+Φ(t))/2 = ρ00(0), (5.55)

while the off-diagonal elements have non-trivial evolution:

ρ01(t) = e−i(ωt+Φ(t))/2ρ01(0)e−i(ωt+Φ(t))/2 = e−iωte−iΦ(t)ρ01(0), (5.56)

where the key is the opposite sign in the second exponential from σz |1〉 = − |1〉.
Again, this is with B(t) some specific realization of the noise. To predict what we

actually see in the lab, we have to do many experiments, each with its own random

noise realization, and thus we want the average over noise of this density matrix. This

is

〈ρ01(t)〉noise = e−iωt 〈e−iΦ(t)〉noise ρ01(0). (5.57)

We should be clear about the interpretation of these symbols. This is still a density

matrix (i.e., an operator); the average does not mean expectation value over qubit

states. The ρ01(0) on the right hand side is also not random: we assume that we can

prepare the same initial condition each experiment. What this equation is predicting

is the average over time-evolved copies of this initial state.

Let’s calculate the phase factor in more detail. We have

〈e−iΦ(t)〉noise =

∫
DB P [B(t)]

(
1− iΦ(t)− 1

2
Φ2(t) + · · ·

)
= 1− 1

2
〈Φ2(t)〉noise + · · ·

= e−D(t).

(5.58)

The first line is the definition of the average and a Taylor expansion of the exponential.

The linear Φ term vanishes by our assumption that the noise is zero-mean. The odd

powers vanish because the noise is Gaussian. The remaining terms, the even powers

of Φ, can be re-summed into the exponential again by assumption of Gaussianity,

which in particular says that the higher moments 〈Φ4〉 ∼ 〈Φ2〉 〈Φ2〉, etc. The final
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answer is expressed in terms of the function D(t), which is

D(t) =
1

2
〈Φ2(t)〉noise

=
µ2

2

∫ t

0

dt′dt′′ 〈B(t)B(t′)〉noise

=
µ2

2

∫ t

0

dt′dt′′
∫ ∞
−∞

eiν(t′−t′′)SBB(ν)

= 2µ2

∫ ∞
−∞

dν
sin2(νt/2)

ν2
SBB(ν),

(5.59)

in terms of the noise PSD, Eq. (5.49).

To summarize, we have found that, averaging over the noise, the qubit density

matrix evolves as

ρ(t) =

(
ρ00(0) e−D(t)ρ01(0)

e−D(t)ρ∗01(0) ρ11(0)

)
. (5.60)

This is similar to our continuous dephasing model [Eq. (5.44)], except now we have

a somewhat arbitrary-looking function D(t) rather than simple exponential decay

D(t) ∼ Γt. In Eq. (5.60), we have suppressed the notation 〈· · ·〉noise on the left-hand

side, to make comparison to Eq. (5.44) clear. One might wonder what the equivalent

“noise averaging” was in the old channel model. The answer is that in the dephasing

channel and Lindblad calculations, we were averaging over the bath state using trB

to compute the Kraus operators.

In general, Eq. (5.60) is non-Markovian. If the bath (i.e., the external field

B(t)) has long auto-correlations in time, we cannot simply approximate it as acting

randomly at each time step; its action in one time step can become correlated with

its action at a later time step. As a very simple example, consider modeling the noise

as a monochromatic field with a random phase,

B(t) = B0 cos(ω0t+ φ), (5.61)

where 0 ≤ φ ≤ 2π is evenly distributed P [φ] = 1/2π. The autocorrelator is easy to

calculate:

〈B(t)B(t′)〉noise =

∫ 2π

0

dφ

2π
cos(ω0t+ φ) cos(ω0t

′ + φ) =
1

2
cos[ω0(t− t′)] (5.62)

which in particular confirms that this model produces stationary noise. The noise

PSD is similarly easy to obtain:

SBB(ν) =

∫ ∞
−∞

dt

2π
e−iνt 〈B(t)B(0)〉noise =

B2
0

2
[δ(ν − ω0) + δ(ν + ω0)] . (5.63)
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As one would expect, the noise comes in only at the frequency of the external field.

This gives a simple behavior for the density matrix of the qubit:

D(t) = 2µ2

∫ ∞
−∞

dν
sin2(νt/2)

ν2
SBB(ν) =

2µ2B2
0

ω2
0

sin2(ω0t/2). (5.64)

Here, in contrast to our dephasing examples, the qubit does not simply decohere

into a diagonal density matrix. Rather, its off-diagonal elements oscillate, and in

particular ρ01(t) = e−D(t)ρ01(0) becomes periodic with period set by the noise field.

This is highly non-Markovian behavior: the bath actually acts to re-cohere the qubit

state.

What kind of noise model gives rise to a Markov-type behavior? Suppose that

the noise PSD is roughly flat around ν = 0, say with some bandwidth Γc.
10 If we

are interested in the density matrix’s value at times t � 1/Γc, then the “window”

function in the noise integral Eq. (5.59) is essentially a Dirac delta, in the sense that

Wt(ν) =
sin2(νt/2)

ν2
≈ t

π
δ(ν). (5.66)

In this case, we obtain the simple result

D(t) ≈ −Γt, Γ =
2µ2

π
SBB(0). (5.67)

The time evolution reduces to the simple Markovian result Eq. (5.44). We also get a

microscopic derivation of the decay constant Γ, in terms of the noise power spectral

density evaluated at ν = 0. The basic physics is clear once again: if the bath state

resets itself fast compared to our observation scale, then the noise acts independently

in each time step, and we have a stationary Markov process.

5.3.3. Quantum noise: spin-boson model

Finally, let’s consider what happens when the bath is treated quantum mechanically.

In the previous section, we modeled the external random field B(t) as classical. Sup-

pose instead that we quantize it into modes, as in Appendix A. To make contact with

10For example, consider a simple exponentially decaying bath correlation model

〈B(t)B(t′)〉noise = B2
0e
−Γc(t−t′) =⇒ SBB(ν) =

B2
0Γc

ν2 + Γ2
c

, (5.65)

which is roughly given by B2
0/Γc = const for ν . 1/Γc and then falls off sharply.
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those expansions, recall that B = Bz in Eq. (5.45) really means the z-component of

the field. This field component can be expanded into modes

B(t) =
∞∑

k=−∞

gke
iωktbk + g∗ke

−iωktb†k, gk = i

√
ωk
2L3

. (5.68)

Here, we are still quantizing the field in a large box of volume L3, so the sum is

discrete, over modes k propagating in a single direction (say, the x-axis). We are

also implicitly using a basis of polarization vectors ε±(k) so that only one of the

modes has Bz 6= 0, say the + polarization, so that we don’t have to include a sum

over polarizations in Eq. (5.68). As discussed above, this set of approximations

is somewhat contrived if we are thinking about this as a spin in a vacuum, but it

is reasonably accurate for something like a qubit embedded in or at the end of a

transmission line.

We wrote B = B(t) here as a time-dependent operator, and will insert this into the

Hamiltonian (5.45), in order to make direct contact with the external classical B(t)

calculations. This is a little awkward since that is a Schrödinger picture Hamiltonian

for the qubit. A more formal way of justifying this would be to write B in the

Schrödinger picture, include the free-field Hamiltonian Hfield =
∑

k ωkb
†
kbk, and then

time evolve everything together. What we are doing here is working in the “frame

rotating with the field”, which just means we transform everything by Urf = e−iHfieldt

to get rid of the free-field Hamiltonian, instead putting the field time evolution directly

into the B(t) operator. This is essentially the same maneuver used to define the

interaction picture in perturbation theory; we will discuss this more in Sec. 5.4.

The main complication here is that B(t) is now a many-body operator involving

all the modes bk. To define its noise statistics we need to specify a state for the

field. Let’s take it to be the thermal state at temperature T . For a single oscillator

H = ωa†a, the thermal state is

ρT =
1

Z

∞∑
n=0

e−ωn/T |n〉 〈n| , Z =
∞∑
n=0

e−ωn/T =
1

1− e−ω/T
. (5.69)

The creation and annihilation operators in this state are easy to calculate:

〈a†a〉 = nT (ω)

〈aa†〉 = 〈[a, a†] + a†a〉 = 1 + nT (ω)

〈aa〉 = 〈a†a†〉 = 0,

(5.70)
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where the thermal occupation number

nT (ω) =
1

eω/T − 1
. (5.71)

From these results, we can directly calculate the correlations of the field operator of

Eq. (5.68):

〈B(t)B(t′)〉 =
∑
k,k′

gkg
∗
k′e

iωkte−iωk′ t
′ 〈bkb†k′〉+ g∗kgk′e

−iωkteiωk′ t
′ 〈b†kbk′〉

=
∑
k

|gk|2
[
eiωk(t−t′)nT (ωk) + e−iωk(t−t′) (1 + nT (ωk))

]
.

(5.72)

To get to the second line, we used the fact that the partition function of a bunch

of oscillators factors Z =
∏

k Zk, which follows from the fact that H =
∑

kHk, so

that the modes have no correlations amongst themselves. Notice that this noise is

stationary.

From this autocorrelation function, we can easily calculate the noise PSD using

the same definition Eq. (5.49) given above,

SBB(ν) =

∫ ∞
−∞

dt

2π
e−iνt 〈B(t)B(0)〉

=
∑
k

|gk|2 [nT (ωk)δ(ν − ωk) + (1 + nT (ωk)) δ(ν + ωk)] .
(5.73)

The presence of the +1 term, which traces back to the commutator [bk, b
†
k′ ] = δkk′ , is

a hallmark of quantum behavior. It represents noise due to “vacuum fluctuations”,

and in particular is still present in the limit T → 0. In the classical noise case,

there is no corresponding term. This can be formalized by observing that in the

classical case, B(t) is a real variable which commutes with B(0), which implies that

SBB(ν) = SBB(−ν) is a symmetric function (just switch t → −t and translate the

arguments by 2t in the definition). Once quantized, we have instead [B(t), B(0)] 6= 0

and we find that the noise PSD is no longer symmetric in frequency, but rather now

contains an antisymmetric part.

What is the impact of this noise on the qubit? We can solve the qubit’s time

evolution exactly, using nearly the same formulas from the discussion starting at Eq.

(5.52). This is not immediately obvious, because now [H(t), H(t′)] 6= 0, and so we

can’t just drop the time-ordering in the exponential. However, we can still reduce the

full U(t) to an ordinary exponential in this simple model. Consider writing U(t) as a

Magnus expansion, rather than a time-ordered exponential:

U(t) = exp

{
−i
∫ t

0

dt′H(t′) + (−i)2

∫ t

0

dt′
∫ t′

0

dt′′ [H(t′), H(t′′)] + · · ·

}
(5.74)
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where the dots represent terms of O(H3), which are a series of nested commutators [3].

Here, we have

[H(t), H(t′)] =
µ2

4
[B(t), B(t′)]

=
∑
k

|gk|2
(
eiωk(t−t′) − e−iωk(t−t′)

)
= 2i

∑
k

|gk|2 sinωk(t− t′)

(5.75)

The first line is a simple consequence of Eq. (5.45), and then the rest shows that

this commutator is just an imaginary number [as opposed to proportional to σz, like

the first term in Eq. (5.74)]. Thus the higher order Magnus terms are zero, and this

second order term will have no effect on any of the density matrix elements. We find

the same structure as the classical noise case:

ρ(t) =

(
ρ00(0) e−D(t)ρ01(0)

e−D(t)ρ∗01(0) ρ11(0)

)
, (5.76)

where D(t) is given by the same general formula

D(t) = 2µ2

∫ ∞
−∞

dν
sin2(νt/2)

ν2
SBB(ν). (5.77)

The difference now comes in the form of this noise power.

To connect to more general models, we can make the approximation that the bath

is a continuum, so that
∑

k becomes an integral. We define the bath spectral density

J(ν) by ∑
k

|gk|2 =

∫ ∞
−∞

dν J(ν), (5.78)

in which case we can write

SBB(ν) =

∫ ∞
−∞

dν ′ J(ν ′) [nT (ν ′)δ(ν − ν ′) + (1 + nT (ν ′)) δ(ν + ν ′)]

=

J(ν)nT (ν), ν < 0

J(ν)[1 + nT (ν)], ν > 0.

(5.79)

Here, we see again the asymmetry in the PSD as a function of frequency. The terms

J(ν) essentially encode the density of states of the bath, while the terms nT (ν) give

the thermal occupancy of the bath modes. The +1 term represents extra noise from

bath vacuum fluctuations. Plugging this into D(t), we get

D(t) = 2µ2

∫ ∞
−∞

dν
sin2(νt/2)

ν2
J(ν)nT (ν) +D0(t), (5.80)
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where

D0(t) = 2µ2

∫ ∞
0

dν
sin2(νt/2)

ν2
J(ν) (5.81)

is attenuation from vacuum fluctuations (in particular, generically, D0 6= 0 in the

T → 0 limit).

Much like the classical case, these formulas show that the qubit evolves in a

generically non-Markovian fashion. The Markov limit arises in similar regimes as

analyzed there: when the PSD is sufficiently flat in some regime ν . Γc and we are

interested in t & 1/Γc. In this case, for t & 1/Γc, we have

D(t) ≈ Γt, (5.82)

with the decay constant

Γ =
2µ2

π
J(0)

[
nT (0) +

1

2

]
. (5.83)

The extra 1/2 comes from the D0 term, where we normalize
∫∞

0
dx δ(x) = 1/2.

A prototypical case is that of Ohmic damping, where we take J(ν) = Aν at low

frequencies ν . Γc, where A is some constant, and then falls off like some power of

1/ν above Γc. Since J(ν)nT (ν)→ Aν∗T/ν = AT at T & ν, while J(ν)→ 0 as ν → 0,

this gives the simple result that Γ = 2µ2AT/π, and the zero-point fluctuations drop

out.

5.4. Thermalization: optical Bloch equations

Problems

1. Decoherence and irreversibility. In this problem you will explore how de-

coherence arises from irreversible interactions with an explicit bath, and the

way that this requires a large bath. Consider a system S consisting of a single

qubit, coupled to a bath of N other qubits, through the Hamiltonian

H =
N∑
i=1

giZSZi (5.84)

where Z = σz is a Pauli operator, and the gi are real couplings. Notice that

there is no free evolution of the system qubit, for simplicity.

(a) Start with N = 1. Prepare the bath qubit in the state |+〉 = (|0〉+|1〉)/
√

2.

Assume the system starts in an arbitrary pure state |ψ〉 = a |0〉 + b |1〉.
Compute the reduced density matrix ρS(t).
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(b) Compute the von Neumann entropy of S as a function of time. Pick some

value for g and plot this function. Give an interpretation for what happens

at t = 2π/g in terms of non-local information shared between S and the

bath qubit.

(c) Now letN � 1 be arbitrary (but finite). Prepare the bath in |+〉1 |+〉2 · · · |+〉N .

Compute the reduced density matrix ρS(t).

(d) Find a time trec where ρS(trec) = ρS(0). This is called a Poincaré recur-

rence.

(e) Suppose the gi are randomly drawn from a normal distribution with width

σg centered around g = 0. Write a code that draws these values for N =

1, 10, 100 and plot the von Neumann entropies of S for each case as a

function of time (i.e., there should be three plots). What happens to trec?

(f) Using your result for the reduced state ρS(t), write an estimate for the off-

diagonal elements in the short-time limit t ≈ 0, as an exponential function

of the couplings gi [hint: cosx ≈ (1 − x2) ≈ e−x
2

for small x]. Let N be

very large, and find Γdec such that ρ01(t) ≈ e−Γdectρ01(0).

2. Decoherence from gas collisions. Suppose you prepare an atom, say rubid-

ium, in a superposition of two locations |ψ〉 = (|xL〉+ |xR〉)
√

2. You can model

these states as Gaussians in position space with narrow widths. We can think

about doing this by setting up some optical trap with two minima. For details

ask anybody in Holger Müller’s group.

(a) There will be ambient gas in the chamber. Let’s model it as a thermal

bath of helium atoms at room temperature T = 300 K and some pressure

P which we can try to lower with a vacuum pump. Estimate the de Broglie

wavelength of these gas atoms.

(b) Suppose the spatial superposition is such that ∆x = |xL − xR| is order

microns. Compare this to the de Broglie wavelength of the bath. Suppose

one of these gas particles collides with the trapped atom. Will the bath

particle learn the location of the atom? What will the reduced state of

the atoms become if this collision occurs? Keep in mind that mRb � mHe,

and the Rb is in a trap. Does its location change? Assuming that there

is some probability p for the scattering event in the first place, model the

collision as a channel acting on the atom.
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(c) Assume that the scattering cross section is approximately given by the

geometric cross section σ ∼ AHe ∼ (0.1 nm)2. Given pressure P , estimate

the decoherence time of the atom. Evaluate this numerically for something

reasonable, say P ∼ 10−8 Pa.
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A. Quantum mechanics of the electromagnetic field

In this appendix we collect some basic facts about the quantum treatment of the

electromagnetic field, which will be used repeatedly through the rest of the notes.

A.1. Quantization of the field

The energy content of the electromagnetic field is given by its Hamiltonian

H =
1

2

∫
d3x E2(x) + B2(x). (A.1)

This expression is true both classically and in the quantum theory. When we quan-

tize the electromagnetic field, in the absence of interactions, it becomes a bunch of

harmonic oscillators. Here we review the basic procedure.

Recall that we can write the EM field in terms of a gauge potential Aµ(x, t), a

Lorentz 4-vector, as

Ei(x, t) = ∂0Ai(x, t)− ∂iA0(x, t)

Bi(x, t) =
∑
j,k

εijk∂jAk(x, t).
(A.2)

Here, µ = 0, x, y, z is the full spacetime index, 0 is the time component, and i = x, y, z

label the spatial components. There is freedom in this decomposition (“gauge symme-

try”), which in particular means we can set A0 = 0, and further choose
∑

µ ∂µA
µ = 0

(“Lorentz gauge”). The classical equations of motion for Aµ in this gauge are simply[
∂2

0 −∇2
]
Aµ(x, t) = 0 (A.3)

which have plane wave solutions (“modes”) of the form

Aµ(x, t) ∼ εµ(k)uk(x)e−iωkt, (A.4)

where k is the momentum vector of the plane wave, ωk = |k| is the energy (thus

frequency in our ~ = c = 1 units), εµ(k) is a polarization vector which is orthogonal

to the direction of propagation
∑

µ k
µεµ(k) = 0 with k0 := ωk, and finally uk(x) =

eik·x/
√

2ωkL3 are the spatial profiles of the waves. For simplicity we are assuming

that we are looking at fields in a cubic box of linear size L with periodic boundary

conditions; free space is recovered by L→ 0. In particular, this means that the set of

allowed momenta k is discrete, k = πn/L with n = (nx, ny, nz) a vector of integers.
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The plane wave solutions form a complete set, and so we can write the general solution

of the equations of motion as a Fourier sum

Aµ(x, t) =
∑
k,s

εs,µ(k)uk(x)e−iωkta†k,s + ε∗s,µ(k)u∗k(x)eiωktak,s. (A.5)

The conjugated terms ensure that Aµ is real. The sum s = 1, 2 is over the two

independent polarization vectors for each direction k. The coefficients ak,s and their

conjugates give the Fourier coefficients for each mode in the expansion. Classically,

these are just complex numbers.

Now, to move to the quantum theory, we first note that Eq. (A.3) is not just the

classical equation of motion for Aµ. It is also the Heisenberg-picture equation once

we turn Aµ into an operator (or more accurately, a set of operators Aµ(x), one for

each spatial location x). That is, it can be derived from Ȧµ = i[H,Aµ]. Thus in

Eq. (A.5), we can promote the ak,s and their conjugates to operators. We assign the

commutation relations

[ak,s, a
†
k′,s′ ] = δkk′δss′ . (A.6)

The reason for doing this is better justified by starting with the canonical commuta-

tion relations on Aµ and its conjugate momentum πµ ∼ Ȧµ, but this is a little subtle

in a gauge theory and beyond the scope of what we need here. Using Eqs. (A.5),

(A.6), (A.2), one finds that the Hamiltonian of the field [Eq. (A.1)] reduces to

H =
∑
k,s

ωk
2

[
ak,sa

†
k,s + a†k,sak,s

]
= Λ +

∑
k,s

ωka
†
k,sak,s.

(A.7)

This is, of course, just the sum of a bunch of harmonic oscillator Hamiltonians, one

for each wavevector k and polarization s. The constant

Λ =
∑
k,s

ωk
2

(A.8)

arises from the commutation relation, and is very infinite (it diverges like 1/L4 as

L → ∞, which you can see by turning the sum into an integral in the continuum

limit). However, it is just a number and has no effect unless we are considering gravity

— which we are not — so we will ignore it. Physically, it corresponds to zero-point

energies of all the field modes.

In many problems of interest, we have sources and/or detectors that produce

and/or detect the electromagnetic field in a very narrow band of frequencies, say
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∆ω . 1/L. In this case, we will often focus on just a single mode of the field, say

wavevector k0 and polarization s0. The Hamiltonian of this single mode is simply

Hone mode = ωa†a, (A.9)

where a = ak0,s0 and ω = ωk0 .
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